Summary
Thermoelectric generator, which converts heat into electrical energy, has great potential to power portable devices. Nevertheless, the efficiency of a thermoelectric generator suffers due to inefficient thermoelectric material performance. In the last two decades, the performance of inorganic thermoelectric materials has been significantly advanced through rigorous efforts and novel techniques. In this review, major issues and recent advancements that are associated with the efficiency of inorganic thermoelectric materials are encapsulated. In addition, miscellaneous optimization strategies, such as band engineering, energy filtering, modulation doping, and low dimensional materials to improve the performance of inorganic thermoelectric materials are reported. The methodological reviews and analyses showed that all these techniques have significantly enhanced the Seebeck coefficient, electrical conductivity, and reduced the thermal conductivity, consequently, improved ZT value to 2.42, 2.6, and 1.85 for near‐room, medium, and high temperature inorganic thermoelectric material, respectively. Moreover, this review also focuses on the performance of silicon nanowires and their common fabrication techniques, which have the potential for thermoelectric power generation. Finally, the key outcomes along with future directions from this review are discussed at the end of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.