Commercial lighting for ambient and display applications is mostly based on blue light-emitting diodes (LEDs) combined with phosphor materials that convert some of the blue light into green, yellow, orange, and red. Not many phosphor materials can offer stable output under high incident light intensities for thousands of operating hours. Even the most promising LED phosphors saturate in high-power applications, that is, they show decreased light output. The saturation behavior is often poorly understood. Here, we review three popular commercial LED phosphor materials, Y 3 Al 5 O 12 doped with Ce 3+ , CaAlSiN 3 doped with Eu 2+ , and K 2 SiF 6 doped with Mn 4+ , and unravel their saturation mechanisms. Experiments with square-wave-modulated laser excitation reveal the dynamics of absorption and decay of the luminescent centers. By modeling these dynamics and linking them to the saturation of the phosphor output intensity, we distinguish saturation by ground-state depletion, thermal quenching, and ionization of the centers. We discuss the implications of each of these processes for LED applications. Understanding the saturation mechanisms of popular LED phosphors could lead to strategies to improve their performance and efficiency or guide the development of new materials.
White light emitting diodes (LEDs) composed of a blue LED and a green/yellow downconverter material (phosphor) can be very efficient, but the color is often not considered very pleasant. Although the color rendering can be improved by adding a second, red-emitting phosphor, this generally results in significantly reduced efficacy of the device due to the broad emission of available conventional red-emitting phosphors. Trivalent europium is well-known for its characteristic narrow-band emission in the red region, with little radiation outside the eye sensitivity area, making it an ideal candidate for enabling high color quality as well as a high lumen equivalent of radiation from a spectrum point of view. However, a thorough study of the practical potential and challenges of Eu3+ as a red emitter for white LEDs has remained elusive so far due to the low excitation probability in the blue spectral range which is often even considered a fundamental limitation. Here, we show that the absorption in the blue region can be brought into an interesting regime for white LEDs and show that it is possible to increase both the color rendering and efficacy simultaneously using Eu3+ as a red emitter, compared to warm white LEDs comprising conventional materials.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.