This paper presents a comprehensive study about a Simplified Rail Power Conditioner (SRPC) based on a half-bridge indirect AC/DC/AC Modular Multilevel Converter (MMC) and a V/V traction power transformer. The proposed system with a half-bridge MMC can decrease the costs, reduce the control complexity, and require less hardware devices in comparison with the rail power conditioner based on a full-bridge indirect AC/DC/AC MMC. Moreover, the SRPC with a half-bridge MMC is able to compensate current harmonics, reactive power, and the Negative Sequence Components (NSCs) of currents, which are caused by the unbalance loads between power grid phases. This paper explains the system architecture and its control algorithms based on a pulse-width modulation and a proportional-integral controller, which is used to control the compensation currents. The simulation results of the SRPC show the submodule voltage balancing control and the DC-bus voltage control in order to verify its effectiveness. The compensation strategy based on the NSCs detection is described and evaluated through simulation results.
Nowadays, railway electrification is the most efficient way to power the trains. However, power quality (PQ) phenomena toward public power systems (PPSs) have always a main concern to the railway operators, especially when the single-phase traction power system is interconnected to the three-phase PPS. The last decades have witnessed an on-going evolution of PQ improvement and traction power supply systems, contributing to diminish the negative impacts of AC railway networks on PQ of the three-phase PPS. In this context, this paper presents a global overview of the PQ phenomena in AC railway electrification, as well as the impacts of the potential hazards on the safe operation of electrified railways. The paper also reviews PQ improvement methods from the early use of AC railway electrification until the emergence of the new power electronics devices in railways industry.
Electric locomotives in AC traction power systems represent a huge single-phase non-linear load and, detrimentally, affect the power quality and the efficiency of the three-phase power grid. Nevertheless, along the last decades, power electronics are being used to mitigate power quality problems in the three-phase power grid. In particular, Rail Power Conditioner (RPC) helps to increase the loading capacity of traction substations and improve the power quality of three-phase power grids. As the main characteristics, an RPC can supply reactive power, suppress current harmonics and overcome currents imbalance of the three-phase power grid. On the other hand, the traction substations may be constituted by different types of power transformers. For instance, single-phase power transformers and open-delta (V/V) power transformers are widely used, while Scott power transformers are less frequently used, since they are more complex and expensive. In this framework, this work presents a review study of RPC topologies, including their operation modes, and a comprehensive comparison between the characteristics of the RPC topologies when using different types of AC traction substations and power transformers. This helps to ensure the correct selection of the RPC topology for a specific application, according to the main structure of the traction substation. Consequently, and based on the established review, it is possible to sort and allocate each RPC topology for limited or wider applications.
This paper presents a deadbeat predictive current control methodology to reduce the circulating currents in a modular multilevel converter (MMC) when it operates as a rail power conditioner (RPC) in a conventional railway system-based V/V connection. For this purpose, a half-bridge MMC based on half-bridge submodules, operating as an RPC is explained, and the total system is denominated as a simplified rail power conditioner (SRPC). The SRPC in this study is used to compensate harmonics, reactive power, and the negative sequence component of currents. This paper explains the SRPC system architecture, the key control algorithms, and the deadbeat predictive current control methodology. Mathematical analysis, based on the MMC equivalent circuit, is described and the reference equations are presented. Moreover, simulation results of the deadbeat predictive current control methodology are compared with the results of the conventional proportional-integral (PI) controller. This comparison is to verify the effectiveness of the proposed control strategy. Simulation results of the SRPC show reduced circulating currents in the MMC phases when using the predictive control approach, besides accomplishing power quality improvement at the three-phase power grid side.
Rail power conditioner (RPC) has the ability to improve the power quality in AC railway power grids. This power conditioner can increase the loading capacity of traction substations, balance the active power between the feeder load sections, and compensate for reactive power and current harmonics. At present, there is increasing use of multilevel converter topologies, which provide scalability and robust performance under different conditions. In this framework, modular multilevel converter (MMC) is emerging as a prominent solution for medium-voltage applications. Serving that purpose, this paper focuses on the implementation, testing, and validation of a reduced-scale laboratory prototype of a proposed RPC based on an MMC. The developed laboratory prototype, designed to be compact, reliable, and adaptable to multipurpose applications, is presented, highlighting the main control and power circuit boards of the MMC. In addition, MMC parameter design of the filter inductor and submodule capacitor is also explained. Experimental analysis and validation of a reduced-scale prototype RPC based on MMC topology, are provided to verify the power quality improvement in electrified railway power grids. Thus, two experimental case studies are presented: (1) when both of the load sections are unequally loaded; (2) when only one load section is loaded. Experimental results confirm the RPC based on MMC is effective in reducing the harmonic contents, solving the problem of three-phase current imbalance and compensating reactive power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.