In this work, we propose an algorithm for finding an approximate global minimum of a concave quadratic function with a negative semi-definite matrix, subject to linear equality and inequality constraints, where the variables are bounded with finite or infinite bounds. The proposed algorithm starts with an initial extreme point, then it moves from the current extreme point to a new one with a better objective function value. The passage from one basic feasible solution to a new one is done by the construction of certain approximation sets and solving a sequence of linear programming problems. In order to compare our algorithm with the existing approaches, we have developed an implementation with MATLAB and conducted numerical experiments on numerous collections of test problems. The obtained numerical results show the accuracy and the efficiency of our approach.
In this work, we propose a new approach called "Successive Linear Programming Algorithm (SLPA)" for finding an approximate global minimizer of general nonconvex quadratic programs. This algorithm can be initialized by any extreme point of the convex polyhedron of the feasible domain. Furthermore, we generalize the simplex algorithm for finding a local minimizer of concave quadratic programs written in standard form. We prove a new necessary and sufficient condition for local optimality, then we describe the Revised Primal Simplex Algorithm (RPSA). Finally, we propose a hybrid local-global algorithm called "SLPLEX", which combines RPSA with SLPA for solving general concave quadratic programs. In order to compare the proposed algorithms to the branch-and-bound algorithm of CPLEX12.8 and the branch-and-cut algorithm of Quadproga, we develop an implementation with MATLAB and we present numerical experiments on 139 nonconvex quadratic test problems.
KeywordsNonconvex quadratic programming • Concave quadratic programming • Successive linear programming • Simplex algorithm • Extreme point • Local minimizer • Global minimizer • Approximate global minimizer • Numerical experiments Mathematics Subject Classification 90C20 • 90C26 • 90C59 B Mohand Bentobache
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.