HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The study aims to assess the impact of shear walls on active vibration control of the buildings. It has evaluated the design of a smart 20-story building equipped with an Active Mass Damper to mitigate earthquakes. The design has combined shear walls with an Active Mass Damper (AMD) added on the top floor. The control configuration used a force actuator combined with a displacement sensor and was examined with Direct Velocity Feedback. The effect of the presence of wall braces in the design of tall buildings on the performances as well as the control effort has been studied. The results have stated that the shear walls designed for mitigating earthquake loads are capable of reducing the displacement of the tall building somewhat but failed to reduce the acceleration of the top floor. The combination between shear walls and AMD has incredible damping capability on the displacement and acceleration of the building. However, the shear walls tend to increase the control cost since they require more control energy.
Recently, the need to protect people and structures against attacks of terrorists are of a high increase. The main objective of this paper is to enhance the concrete resistance against ballistic impact of high velocity projectile by using different combination layers from different materials as reinforcement for concrete and investigate their effect on the penetration depth of projectile and the resulted damage of concrete. The investigation presents the development of a finite element accurate models using AUTODYN 3D. The Lagrangian formulation numerical techniques is used to model the projectile and concrete target. The investigated models are reinforced using different layers combinations of several materials such as ceramics, fiber composite, polymer and metal: (AL2O3 - 99.7% and Kevlar- epoxy, Teflon and aluminum alloy 6061-T6) .Those materials were chosen because of their high thermal shock resistance or their great capability in energy absorption. The main findings showed a significant enhancement in the reduction of penetration depth compared to the concrete resistance without reinforcement, which demonstrate the great performance of the used combinations in the shock wave propagation. Hence from the findings of this work we can say that the concrete reinforced by ceramics or aluminum alloy with fiber composite or polymer can be used for several applications as it represents a successful anti-penetration composite structure.
Numerical simulation of the response of concrete structures to impact loading is an important tool in both the design of hardened protective structures and in the planning for effective attacks against such structures. This paper presents the development of an accurate numerical model using AUTODYN to study the response of concrete structures shielded by ceramic (Al 2 O 3 -99.7%) plates exposed to 23 mm projectile. Concrete and ceramic are modeled using a combined mesh and meshfree numerical technique. The used meshfree Lagrangian technique (SPH) is to overcome problems of mesh tangling and remove the requirement for the use of erosion algorithms. The technique also allows an explicit representation of ceramic through (SPH) element formulation. In such a model, the concrete region local to the penetrator, which experiences large deformation, is represented using the SPH solver. The modeled penetrator and the concrete further away from the impact observed to undergo little or no deformation by using the Lagrange solver.The aim of this paper was to study numerically the penetration resistance of concrete structures shielded by ceramic (Al 2 O 3 -99.7%) plates. The main findings show an enhancement in the penetration resistance of about 66% while using ceramic plates. Here, we used ceramic because of its electric, magnetic, and thermal insulation. Hence, we can use concrete structures shielded by ceramic in many types of medical, nuclear, power generating and electronic applications.
Numerical simulation of the response of concrete structures to impact loading is an important tool in both the design of hardened protective structures and in the planning for effective attacks against such structures. This paper presents the development of an accurate finite-element model using AUTODYN to study the response of concrete structures reinforced by ceramic (Al2O3-99.7%) rods and plates exposed to 23 mm projectile. Concrete and ceramic are modelled using a combined mesh and meshfree numerical technique. The used meshfree Lagrangian technique (SPH) is to overcome problems of mesh tangling and remove the requirement for the use of erosion algorithms. The technique also allows an explicit representation of Ceramic through (SPH) element formulation. In such a model, the concrete region local to the penetrator, which experiences large deformation, is represented using the SPH solver. The modelled penetrator and the concrete further away from the impact observed to undergo little or no deformation by using the Lagrange solver.The aim of this paper is to study numerically the penetration resistance of concrete structures reinforced by ceramic (Al2O3-99.7%). The main findings show an enhancement in the penetration resistance of about 45% while using ceramic. Here, we used ceramic because of its electric, magnetic, and thermal insulation. Hence, we can use concrete structures reinforced by ceramic in many types of medical, nuclear, power generating and electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.