We present DEANNA, a framework for natural language question answering over structured knowledge bases. Given a natural language question, DEANNA translates questions into a structured SPARQL query that can be evaluated over knowledge bases such as Yago, Dbpedia, Freebase, or other Linked Data sources. DEANNA analyzes questions and maps verbal phrases to relations and noun phrases to either individual entities or semantic classes. Importantly, it judiciously generates variables for target entities or classes to express joins between multiple triple patterns. We leverage the semantic type system for entities and use constraints in jointly mapping the constituents of the question to relations, classes, and entities. We demonstrate the capabilities and interface of DEANNA, which allows advanced users to influence the translation process and to see how the different components interact to produce the final result.
Search engines are increasingly relying on large knowledge bases of facts to provide direct answers to users' queries. However, the construction of these knowledge bases is largely manual and does not scale to the long and heavy tail of facts. Open information extraction tries to address this challenge, but typically assumes that facts are expressed with verb phrases, and therefore has had difficulty extracting facts for noun-based relations.We describe ReNoun, an open information extraction system that complements previous efforts by focusing on nominal attributes and on the long tail. ReNoun's approach is based on leveraging a large ontology of noun attributes mined from a text corpus and from user queries. ReNoun creates a seed set of training data by using specialized patterns and requiring that the facts mention an attribute in the ontology. ReNoun then generalizes from this seed set to produce a much larger set of extractions that are then scored. We describe experiments that show that we extract facts with high precision and for attributes that cannot be extracted with verb-based techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.