The primary requirement in designing air conditioning systems in healthcare facilities is eliminating contaminants. It is considered one of the crucial health elements in building design, particularly in the presence of many airborne diseases such as COVID-19. The purpose of this numerical research is to simulate various ventilation designs for a hospital room model by taking into account results obtained by previous researchers. Four designs with three airflows, 9, 12, and 15 ACH (Air Change per Hour), are applied to explore the capacity of the ventilation system to remove contaminants. The objective is to determine the influence of airflow and the diffuser location distribution on the pollutants elimination represented by carbon dioxide. The Reynold Averaged Navier–Stokes (RANS) equations and the k-ε turbulence model were used as the underlying mathematical model for the airflow. In addition, boundary conditions were extracted from ASHRAE (American Society of Heating, Refrigeration, and Air-Conditioning Engineers Society) ventilation publications and relevant literature. Contrary to what was expected, this study’s results demonstrated that increased ventilation alone does not always improve air distribution or remove more contaminants. In addition, pollutant removal was significantly affected by the outlet’s location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.