Ammonia, a molecule that is gaining more interest as a fueling vector, has been considered as a candidate to power transport, produce energy, and support heating applications for decades. However, the particular characteristics of the molecule always made it a chemical with low, if any, benefit once compared to conventional fossil fuels. Still, the current need to decarbonize our economy makes the search of new methods crucial to use chemicals, such as ammonia, that can be produced and employed without incurring in the emission of carbon oxides. Therefore, current efforts in this field are leading scientists, industries, and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis, this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector, moving through all of the steps in the production, distribution, utilization, safety, legal considerations, and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed, thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works, this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further, the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes, legal barriers that will be faced to achieve its deployment, safety and environmental considerations that impose a critical aspect for acceptance and wellbeing, and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein, this work sets the principles, research, practicalities, and future views of a transition toward a future where ammonia will be a major energy player.
A modified, non-damaging, protocol for the production of fertile transgenic wheat (Triticum aestivum L. cultivar Giza 164) plants by laser micropuncture was developed. The new homemade setup secures the transformation of as many as 60 immature embryo-derived calli (10000 cells each) in less than one hour using a UV excimer laser with two dimensional translation stages, a suitable computer program and a proper optical system. Five-day-old calli were irradiated by a focused laser microbeam to puncture momentarily made self-healing holes ( approximately 0.5 microm) in the cell wall and membrane to allow uptake of the exogenous DNA. The plant expression vector pAB6 containing bar gene as a selectable marker for the herbicide bialaphos resistance and GUS (uidA) gene as a reporter gene was used for transformation. No selection pressure was conducted during the four-week callus induction period. Induced calli were transferred to a modified MS medium with 1 mg l(-1) bialaphos for regeneration, followed by selection on 2 mg l(-1) bialaphos for rooting. Three regenerated putative transgenic events were evaluated for the integration and stable expression of both genes and results indicated that this modified procedure of laser-mediated transformation can be successfully used in transforming wheat.
Thermal and hydraulic characteristics of turbulent water flow in a transverse corrugated tube with various corrugation direction (inward/outward) and corrugation shape (triangle, curve, rectangle, and trapezoid) are numerically investigated. The axisymmetric model of corrugated tubes with 10 mm inner diameter was investigated by changing the geometrical parameters for Reynolds number ranging from 5000 to 61,000 and constant heat flux boundary condition. Structured, nonuniform grid system is applied. Momentum, continuity, and energy equations were treated by means of a finite volume method using the SIMPLE scheme with the k–ε turbulence model and enhanced wall treatment. The results reveal that corrugation direction and corrugation shape have perceptible effects upon the heat transfer in the form of Nusselt number ( Nu) and pressure drop in the form of friction factor (ƒ). The average Nu for (inward) trapezoidal, rectangular, curved, and triangular corrugation shapes are 52.61%, 50.12%, 47.82%, and 44.96%, respectively, higher than the smooth tube. The average Nu for (outward) trapezoidal, curved, triangular, and rectangular corrugation shapes are 48.31%, 45.72%, 41.23%, and 40.94%, respectively, which are higher than a smooth tube. The results reveal that both inward/outward curved and triangular roughness shape have the superior performance evaluation criterion than rectangular and trapezoidal. Turbulence kinetic energy contour shows the increase in heat transfer performance for all corrugated tubes compared with a smooth tube. Inward corrugated tube provides the highest turbulence kinetic energy along the tube length and, consequently, the highest heat transfer. In addition, inward corrugated tubes provide the highest values and homogeneity of the velocity distribution along the core of tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.