The sudden occurrence of an earthquake induces a liquefaction effect on foundation soil, which causes a substantial increase in the uplift pressure acting on piles and causes structural damage to superstructures. This forms the basis of the necessity of experimenting with the behaviour of piles subjected to uplift loads and predicting their load-carrying capacity or resistance. Fibre-reinforced polymer (FRP) wraps are widely used for strengthening and retrofitting piles subjected to damage. The current study is aimed at determining the uplift load-carrying capacity or resistance of piles wrapped with basalt fibre-reinforced polymer (BFRP) and glass fibre-reinforced polymer (GFRP) sheets by experiment. Preliminary tests were conducted to identify the influence of BFRP and GFRP wraps on the mechanical strength properties of concrete. The mechanical strength of the specimen with the double wrapping of basalt and glass fibres in the perpendicular direction outperformed all other specimens. Moreover, the piles were wrapped with laminates and experimented on for their uplift capacity in dry and submerged conditions. The results indicate a considerable improvement in the uplift resistance of the piles compared with the unconfined piles. The BFRP and GFRP wraps improved the uplift resistance of the piles by 35.56% and 15.56%, respectively, higher than the unconfined pile for dry conditions. The angle of the interfacial friction in dry and submerged states was observed to be the maximum for the perpendicular direction for both of the FRP wraps, and the failure modes were compared. The simulated model showed a significant correctness for determining the uplift resistance of FRP-wrapped piles in dry and submerged states. The degree of agreement in the dry condition for the experimental results and finite element method was more than 94% for all fibre wraps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.