Automatic human motion tracking in video sequences is one of the most frequently tackled tasks in computer vision community. The goal of human motion capture is to estimate the joints angles of human body at any time. However, this is one of the most challenging problem in computer vision and pattern recognition due to the high-dimensional search space, self-occlusion, and high variability in human appearance. Several approaches have been proposed in the literature using different techniques. However, conventional approaches such as stochastic particle filtering have shortcomings in computational cost, slowness of convergence, suffers from the curse of dimensionality and demand a high number of evaluations to achieve accurate results. Particle swarm optimization (PSO) is a population-based globalized search algorithm which has been successfully applied to address human motion tracking problem and produced better results in high-dimensional search space. This paper presents a systematic literature survey on the PSO algorithm and its variants to human motion tracking. An attempt is made to provide a guide for the researchers working in the field of PSO based human motion tracking from video sequences. Additionally, the paper also presents the performance of various model evaluation search strategies within PSO tracking framework for 3D pose tracking.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic fatal infection with no known treatment. The severity of the disease and the fast viral mutations forced the scientific community to search for potential solution. Here in the present manuscript, some benzofused1,2,3triazolesulfonamide hybrids were synthesized and evaluated for their anti- SARS-CoV-2 activity using in silico prediction then the most potent compounds were assessed using in-Vitro analysis. The in-Silico study was assessed against RNA dependent RNA polymerase, Spike protein S1, Main protease (3CLpro) and 2'-O-methyltransferase (nsp16). It was found that 4b and 4c showed high binding scores against RNA dependent RNA polymerase reached -8.40 and -8.75 Kcal/mol, respectively compared to the approved antiviral (remdesivir -6.77 Kcal/mol). Upon testing the binding score with SARS-CoV-2 Spike protein it was revealed that 4c exhibited the highest score (-7.22 Kcal/mol) compared to the reference antibacterial drug Ceftazidime (-6.36 Kcal/mol). Surprisingly, the two compounds 4b and 4c showed the highest binding scores against SARS-CoV-2 3CLpro (-8.75, -8.48 Kcal/mol, respectively) and nsp16 (- 8.84 and – 8.89 Kcal/mol, respectively) displaying many types of interaction with all the enzymes binding sites. The derivatives 4b and 4c were examined in vitro for their potential anti-SARS-CoV-2 and it was revealed that 4c was the most promising compound with IC50 reached 758.8108 mM and complete (100%) inhibition of the binding of SARS-CoV-2 virus to human ACE2 can be accomplished by using 0.01 mg.
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.
SARS-CoV-2 and its variants, especially the Omicron variant, remain a great threat to human health. The need to discover potent compounds that may control the SARS-CoV-2 virus pandemic and the emerged mutants is rising. A set of 1,2,3-triazole and/or 1,2,4-triazole was synthesized either from benzimidazole or isatin precursors. Molecular docking studies and in vitro enzyme activity revealed that most of the investigated compounds demonstrated promising binding scores against the SARS-CoV-2 and Omicron spike proteins, in comparison to the reference drugs. In particular, compound 9 has the highest scoring affinity against the SARS-CoV-2 and Omicron spike proteins in vitro with its IC50 reaching 75.98 nM against the Omicron spike protein and 74.51 nM against the SARS-CoV-2 spike protein. The possible interaction between the synthesized triazoles and the viral spike proteins was by the prevention of the viral entry into the host cells, which led to a reduction in viral reproduction and infection. A cytopathic inhibition assay in the human airway epithelial cell line (Vero E6) infected with SARS-CoV-2 revealed the effectiveness and safety of the synthesized compound (compound 9) (EC50 and CC50 reached 80.4 and 1028.28 µg/mL, respectively, with a selectivity index of 12.78). Moreover, the antiinflammatory effect of the tested compound may pave the way to reduce the reported SARS-CoV-2-induced hyperinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.