Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product’s life, when the inventory information is acquired, it will then be interpreted into the form of potential impact “ eco-indicators 99” towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:– Pre-treatment, pumping and EDR (EDR: 0.-6 0 kg CO2 eq. /produced m3) are the process-units with higher environmental impacts.– Energy consumption is the main source of impacts on climate change.– Chemicals consumption (e.g. coagulants, oxidants) are the principle cause of impacts on the ozone layer depletion.– Conventional plants: pre-treatment has high GHG emissions due to chemicals consumption.
An ecologically friendly water-based drilling mud (WBM) was designed by using wood wastes (WP: wood powder) in order to substitute the organic polymers which are very expensive and often make the higher cost of the oil well drilling. This present work is dedicated on studying the rheological behavior and main rheological properties of WBM containing the wood powder at different contents and sizes by substitution of usually used polymers. The effect of wood powder on the drilling fluid filtrate was also analyzed. The drilling fluid that was developed has better rheological properties and fluid loss control which are required for a good functioning of oil well drilling. By a total substitution of polymers, the wood powder (300 µm at 850 kg/m 3) can be used as a filtrate reducer of mud because the WBM filtrate obtained exhibits a minimum and having requested values for such formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.