We consider an IEEE 802.11 network composed of several Access Points (APs) managed by one controller. The controller relies on pieces of information describing the network state as channels, load, associated stations, conflicts, etc. to configure and optimize the network. In this paper, we propose a method that infers the way the different channels are shared between APs according to the Clear Channel Assessment (CCA) mechanism. It is represented through a conflict graph where an edge exists if two APs are able to detect each other. As this detection is sometimes partial, the links are weighted. Our method relies on measures already available on most of Wi‐Fi products and does not generate any traffic except the transmission of these measures to the controller. A Markov network and an optimization problem are then proposed to infer the weights of the conflict graph. Our solution is shown accurate on a large set of simulations performed with the network simulator ns‐3.
Nowadays, it became difficult to ensure data security because of the rapid development of information technology according to the Vs of Big Data. To secure a network against malicious activities and to ensure data protection, an intrusion detection system played a very important role. The main objective was to obtain a high-performance solution capable of detecting different types of attacks around the system. The main aim of this paper is to study the lacks of traditional and open source Intrusion Detection Systems and the Machine Learning techniques commonly used to overcome these lacks. A comparison of some existing works by Intrusion Detection System type, detection method, algorithm and accuracy was provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.