No abstract
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input. However, classinsensitivity of the earlier layers in a network only allows saliency computation with low resolution activation maps of the deeper layers, resulting in compromised image saliency. Remedifying this can lead to sanity failures. We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors and preserving the map sanity. Our method systematically performs multi-scale accumulation and fusion of the activation maps and backpropagated gradients to compute precise saliency maps. From accurate image saliency to articulation of relative importance of input features for different models, and precise discrimination between model perception of visually similar objects, our high-resolution mapping offers multiple novel insights into the black-box deepvisual models, which are presented in the paper. We also demonstrate the utility of our saliency maps in adversarial setup by drastically reducing the norm of attack signals by focusing them on the precise regions identified by our maps. Our method also inspires new evaluation metrics and a sanity check for this developing research direction.
Deep visual models are susceptible to adversarial perturbations to inputs. Although these signals are carefully crafted, they still appear noise-like patterns to humans. This observation has led to the argument that deep visual representation is misaligned with human perception. We counter-argue by providing evidence of human-meaningful patterns in adversarial perturbations. We first propose an attack that fools a network to confuse a whole category of objects (source class) with a target label. Our attack also limits the unintended fooling by samples from non-sources classes, thereby circumscribing human-defined semantic notions for network fooling. We show that the proposed attack not only leads to the emergence of regular geometric patterns in the perturbations, but also reveals insightful information about the decision boundaries of deep models. Exploring this phenomenon further, we alter the 'adversarial' objective of our attack to use it as a tool to 'explain' deep visual representation. We show that by careful channeling and projection of the perturbations computed by our method, we can visualize a model's understanding of human-defined semantic notions. Finally, we exploit the explanability properties of our perturbations to perform image generation, inpainting and interactive image manipulation by attacking adversarialy robust 'classifiers'. In all, our major contribution is a novel pragmatic adversarial attack that is subsequently transformed into a tool to interpret the visual models. The article also makes secondary contributions in terms of establishing the utility of our attack beyond the adversarial objective with multiple interesting applications.
We propose a novel concept to directly match feature descriptors extracted from RGB images, with feature descriptors extracted from 3D point clouds. We use this concept to localize the position and orientation (pose) of the camera of a query image in dense point clouds. We generate a dataset of matching 2D and 3D descriptors, and use it to train a proposed Descriptor-Matcher algorithm. To localize a query image in a point cloud, we extract 2D keypoints and descriptors from the query image. Then the Descriptor-Matcher is used to find the corresponding pairs 2D and 3D keypoints by matching the 2D descriptors with the preextracted 3D descriptors of the point cloud. This information is used in a robust pose estimation algorithm to localize the query image in the 3D point cloud. Experiments demonstrate that directly matching 2D and 3D descriptors is not only a viable idea but also achieves competitive accuracy compared to other state-of-the-art approaches for camera pose localization.
Deep learning has demonstrated state-of-the-art performance for a variety of challenging computer vision tasks. On one hand, this has enabled deep visual models to pave the way for a plethora of critical applications like disease prognostics and smart surveillance. On the other, deep learning has also been found vulnerable to adversarial attacks, which calls for new techniques to defend deep models against these attacks. Among the attack algorithms, the black-box schemes are of serious practical concern since they only need publicly available knowledge of the targeted model. We carefully analyze the inherent weakness of deep models in black-box settings where the attacker may develop the attack using a model similar to the targeted model. Based on our analysis, we introduce a novel gradient regularization scheme that encourages the internal representation of a deep model to be orthogonal to another, even if the architectures of the two models are similar. Our unique constraint allows a model to concomitantly endeavour for higher accuracy while maintaining near orthogonal alignment of gradients with respect to a reference model. Detailed empirical study verifies that controlled misalignment of gradients under our orthogonality objective significantly boosts a model's robustness against transferable black-box adversarial attacks. In comparison to regular models, the orthogonal models are significantly more robust to a range of l p norm bounded perturbations. We verify the effectiveness of our technique on a variety of large-scale models. INDEX TERMSDeep learning, adversarial examples, adversarial perturbations, orthogonal models, robust deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.