Needle-free multijet electrospinning can be used to mass produce artificial ECMs with intrinsic biocompatibility and desirable integration of stem cells for large-scale applications.
Novel clinical grade electrospinning methods could provide three-dimensional (3D) nanostructured biomaterials comprising of synthetic or natural biopolymer nanofibers. Such advanced materials could potentially mimic the natural extracellular matrix (ECM) accurately and may provide superior niche-like spaces on the subcellular scale for optimal stem-cell attachment and individual cell homing in regenerative therapies. The goal of this study was to design several novel "nanofibrous extracellular matrices" (NF-ECMs) with a natural mesh-like 3D architecture through a unique needle-free multi-jet electrospinning method in highly controlled manner to comply with good manufacturing practices (GMP) for the production of advanced healthcare materials for regenerative medicine, and to test cellular behavior of human mesenchymal stem cells (HMSCs) on these. Biopolymers manufactured as 3D NF-ECM meshes under clinical grade GMP-like conditions show higher intrinsic cytobiocompatibility with superior cell integration and proliferation if compared to their 2D counterparts or a clinically-approved collagen membrane.
Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly, we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ-tissue engineering applications with human pluripotent stem cells, where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.