BACKGROUND & AIMS Intestinal thiamin uptake process is vital for maintaining normal body homeostasis of the vitamin; in vitro studies suggest that both thiamin transporter-1 (THTR-1) and -2 (THTR-2) are involved. Mutations in THTR-1 cause thiamin-responsive megaloblastic anemia (TRMA), a tissue specific disease associated with diabetes mellitus, megaloblastic anemia, and sensorineural deafness. However in patients with TRMA, plasma thiamin levels are within normal range, indicating that THTR2 (or another carrier) could provide sufficient intestinal thiamin absorption. We tested this possibility and examined the role of THTR-2 in uptake of thiamin in the intestine of mice. METHODS THTR-2 deficient mice were generated by SLC19A3 gene knockout and used to examine intestinal uptake of thiamin in vitro (isolated cells) and in vivo (intact intestinal loops). We also examined intestinal thiamin uptake in THTR-1 deficient mice. RESULTS Intestine of THTR-2 deficient mice had reduced uptake of thiamin compared to those of wild –type littermate mice (p<0.01); this reduction was associated with a decrease (p<0.01) in blood thiamin levels in THTR-2 deficient mice. However, intestinal uptake of thiamin in THTR-1 deficient mice was not significantly different from that of wild-type littermate animals. Level of expression of THTR-1 was not altered in the intestine of THTR-2 deficient mice, but level of expression of THTR-2 was up-regulated in the intestine of THTR-1 deficient mice. CONCLUSION THTR-2 is required for normal uptake of thiamin in the intestine and can fulfill normal levels of uptake in conditions associated with THTR-1 dysfunction.
BackgroundSpecific morphologic features of hepatocellular carcinoma (HCC) on imaging have identifiable pathologic correlates as well as implications for altering surgical management and defining prognosis. In this study, we compared susceptibility-weighted imaging (SWI) to conventional techniques and correlated our findings with histopathology to determine the role of SWI in assessing morphologic features of HCC without using a contrast agent.Methods86 consecutive patients with suspected HCC were imaged with MRI (including T1, T2, T2*, and SWI) and subsequently CT. 59 histologically-proven HCC lesions were identified in 53 patients. Each lesion on each imaging sequence was evaluated by two radiologists, and classified with respect to lesion morphology, signal intensity relative to surrounding hepatic parenchyma, presence of a pseudocapsule, presence of venous invasion, and internal homogeneity.ResultsHistopathology confirmed pseudocapsules in 41/59 lesions. SWI was able to detect a pseudocapsule in 34/41 lesions; compared to conventional T1/T2 imaging (12/41) and T2* (27/41). Mosaic pattern was identified in 25/59 lesions by histopathology; SWI confirmed this in all 25 lesions, compared to T1/T2 imaging (13/25) or T2* (18/25). Hemorrhage was confirmed by histopathology in 43/59 lesions, and visible on SWI in 41/43 lesions, compared to T1/T2 (7/43) and T2* (38/43). Venous invasion was confirmed by histopathology in 31/59 patients; SWI demonstrated invasion in 28/31 patients, compared to T1/T2 (7/31) and T2* (24/31).ConclusionsSWI is better at identifying certain morphologic features such as pseudocapsule and hemorrhage than conventional MRI without using a contrast agent in HCC patients.
IntroductionThe piriform cortex and cortical amygdala (PCA) and the orbitofrontal cortex (OFC) are considered olfactory-related brain regions. This study aims to elucidate the normal volumes of PCA and OFC of each age groups (20.0-70.0 year old), and whether the volumes of PCA and OFC decline with increasing age and diminishing olfactory function.MethodsOne hundred and eleven healthy right-handed participants (54 males, 57 females), age 20.0 to 70.0 years were recruited to join this study after excluding all the major causes of olfactory dysfunction. Volumetric measurements of PCA and OFC were performed using consecutive 1-mm thick coronal slices of high-resolution 3-D MRIs. A validated olfactory function test (Sniffin’ Sticks) assessed olfactory function, which measured odor threshold (THD), odor discrimination (DIS), and odor identification (ID) as well as their sum score (TDI).ResultsThe volume of OFC decreased with age and significantly correlated with age-related declines in olfactory function. The volume of OFC showed significant age-group differences, particularly after 40 years old (p < 0.001), while olfactory function decreased significantly after 60 years old (p < 0.001). Similar age-related volumetric changes were not found for PCA (p = 0.772). Additionally, there was significant correlation between OFC and DIS on the Right Side (p = 0.028) and between OFC and TDI on both sides (p < 0.05). There was no similar correlation for PCA.ConclusionsAging can have a great impact on the volume of OFC and olfactory function while it has much smaller effect on the volume of PCA. The result could be useful to establish normal volumes of PCA and OFC of each age group to assess neurological disorders that affect olfactory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.