Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNATyr to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity.
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNATyr. The incompatible mitochondrial–nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.
Specific interactions between proteins and their molecular partners drive most biological processes, so understanding how these interactions evolve is an important question for biochemists and evolutionary biologists alike. It is often thought that ancestral proteins were systematically more “promiscuous” than modern proteins, and specificity often does evolve by partitioning and refining the activities of multifunctional ancestors after gene duplication. However, recent studies using ancestral protein reconstruction (APR) have found that ligand-specific functions in some modern protein families evolved de novo from ancestors that did not already have those functions. Further, the new specific interactions evolved by simple mechanisms, with just a few mutations changing classically recognized biochemical determinants of specificity, such as steric and electrostatic complementarity. Acquiring new specific interactions during evolution therefore appears to be neither difficult nor rare. Rather, it is likely that proteins continually gain and new lose activities over evolutionary time as mutations cause subtle but consequential changes in the shape and electrostatics of interaction interfaces. Only a lucky few of these, however, are incorporated into the biological processes that contribute to fitness before they are lost to the ravages of further mutation.
Heritable variation in a gene’s expression arises from mutations impacting cis- and trans-acting components of its regulatory network. Here, we investigate how trans-regulatory mutations are distributed within the genome and within a gene regulatory network by identifying and characterizing 69 mutations with trans-regulatory effects on expression of the same focal gene in Saccharomyces cerevisiae. Relative to 1766 mutations without effects on expression of this focal gene, we found that these trans-regulatory mutations were enriched in coding sequences of transcription factors previously predicted to regulate expression of the focal gene. However, over 90% of the trans-regulatory mutations identified mapped to other types of genes involved in diverse biological processes including chromatin state, metabolism, and signal transduction. These data show how genetic changes in diverse types of genes can impact a gene’s expression in trans, revealing properties of trans-regulatory mutations that provide the raw material for trans-regulatory variation segregating within natural populations.
Identifying the genetic basis for adaptive differences between species requires explicit tests of historical hypotheses concerning the effects of past changes in gene sequence on molecular function, organismal phenotype and fitness. We address this challenge by combining ancestral protein reconstruction with biochemical experiments and physiological analysis of transgenic animals that carry ancestral genes. We tested a widely held hypothesis of molecular adaptationthat changes in the alcohol dehydrogenase protein (ADH) along the lineage leading to Drosophila melanogaster increased the catalytic activity of the enzyme and thereby contributed to the ethanol tolerance and adaptation of the species to its ethanol-rich ecological niche. Our experiments strongly refute the predictions of the adaptive ADH hypothesis and caution against accepting intuitively appealing accounts of historical molecular adaptation that are based on correlative evidence. The experimental strategy we employed can be used to decisively test other adaptive hypotheses and the claims they entail about past biological causality.A central goal of molecular evolutionary biology is to identify the genes and biological mechanisms that mediated historical adaptation. Rigorously testing hypotheses in this area has been a major challenge. Many studies infer past selection from statistical signatures in genes that are involved in biological processes that might have suited species to their Reprints and permissions information is available at www.nature.com/reprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.