The prenylated Rab acceptor (PRA) 1 is a protein that binds prenylated Rab GTPases and inhibits their removal from the membrane by GDI. We describe here the isolation of a second isoform that can also bind Rab GTPases in a guanine nucleotide-independent manner. The two PRA isoforms showed distinct intracellular localization with PRA1 localized primarily to the Golgi complex and PRA2 to the endoplasmic reticulum (ER) compartment. The localization signal was mapped to the COOH-terminal domain of the two proteins. A DXEE motif served to target PRA1 to the Golgi. Mutation of any one of the acidic residues within this motif resulted in significant retention of PRA1 in the ER compartment. Moreover, the introduction of a di-acidic motif to the COOH-terminal domain of PRA2 resulted in partial localization to the Golgi complex. The domain responsible for ER localization of PRA2 was also confined to the carboxyl terminus. Our results showed that these sorting signals were primarily responsible for the differential localization of the two PRA isoforms.
Specification and early patterning of the vertebrate heart are dependent on both canonical and noncanonical wingless (Wnt) signal pathways. However, the impact of each Wnt pathway on the later stages of myocardial development and differentiation remains controversial. Here, we report that the components of each Wnt signal conduit are expressed in the developing and postnatal heart, yet canonical/-catenin activity is restricted to nonmyocardial regions. Subsequently, we observed that noncanonical Wnt (Wnt11) enhanced myocyte differentiation while preventing stabilization of the -catenin protein, suggesting active repression of canonical Wnt signals. Wnt11 stimulation was synonymous with activation of a caspase 3 signal cascade, while inhibition of caspase activity led to accumulation of -catenin and a dramatic reduction in myocyte differentiation. Taken together, these results suggest that noncanonical Wnt signals promote myocyte maturation through caspasemediated inhibition of -catenin activity.
Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/ translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.