Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.
The influence of different SPS‐based methods, that is, conventional spark plasma sintering (SPS), flash SPS (FSPS), and reactive SPS (RSPS) on the properties of Al2O3/SiC composite was investigated. It was shown that the application of preliminary high energy ball milling of the powders significantly enhances the sinterability of the ceramics. It was also demonstrated that FSPS provides unique conditions for rapid, that is, less than a minute, consolidation of refractory ceramics. The Al2O3‐20 wt% SiC composite produced by FSPS possesses the highest relative density (~99%), fracture toughness (7.5 MPa m1/2), hardness (20.3 GPa) and wear resistance among all ceramics produced by other SPS‐based approaches with dwelling time 10 minutes. The RSPS ceramics hold the highest Young's modulus (390 GPa). Substitution of micron‐sized Al2O3 particles by nano alumina does not lead to measurable enhancement of the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.