The World Health Organization declared COVID-19 as a pandemic on the 11 th of March 2020. Since then, many efforts are being carried out to contain the virus. Knowledge and attitude of people should be directed towards strict preventive practices in order to halt the spread of the virus. The aim of the current cross-sectional study is to assess the knowledge, practice and attitude of university students from medical and non-medical colleges in Jordan using a structured questionnaire involving a total number of 592 students. A positive response regarding the overall knowledge about the symptoms of COVID-19 was observed in more than 90% of the students. In response to the attitude and practice, a good number of students nearly 99.7% agreed that hand washing is necessary for prevention of infection whereas 68.4% believed that mask wearing would prevent the infection. Around 6-7% students considered the virus as a stigma hence would not visit hospital. Also, around 10% students believed that their religious beliefs and body immunity might protect them from infection. More dangerously, 20.6% and 19.2% students believed antibiotics and smoking to be a protective measure against the infection respectively. Also, 96.8% do avoid hand shaking, 98.8% wash their hands and 93.3% use alcoholic rub, 95.8% cough or sneeze in a tissue and dispose it in waste bin, 51% will drink ginger with honey and 42.7% eat garlic for infection prevention. The main sources of knowledge were social media, internet and television. No significant difference was noticed between medical and non medical colleges. Thus, there is a need for more detailed and directed measures and awareness campaigns to improve the knowledge, attitude and practice in some critical aspects to contain the virus.
Interferon γ (IFNG) is a key host response regulator of intracellular pathogen replication, including that of Chlamydia spp The antichlamydial functions of IFNG manifest in a strictly host, cell-type and chlamydial strain dependent manner. It has been recently shown that the IFNG-inducible family of immunity-related GTPases (IRG) proteins plays a key role in the defense against nonhost adapted chlamydia strains in murine epithelial cells. In humans, IFN-inducible guanylate binding proteins (hGBPs) have been shown to potentiate the antichlamydial effect of IFNG; however, how hGBPs regulate this property of IFNG is unknown. In this study, we identified hGBP1/2 as important resistance factors against C. trachomatis infection in IFNG-stimulated human macrophages. Exogenous IFNG reduced chlamydial infectivity by 50 percent in wild-type cells, whereas shRNA hGBP1/2 knockdown macrophages fully supported chlamydial growth in the presence of exogenous IFNG. hGBP1/2 were recruited to bacterial inclusions in human macrophages upon stimulation with IFNG, which triggered rerouting of the typically nonfusogenic bacterial inclusions for lysosomal degradation. Inhibition of lysosomal activity and autophagy impaired the IFNG-mediated elimination of inclusions. Thus, hGBP1/2 are critical effectors of antichlamydial IFNG responses in human macrophages. Through their capacity to remodel classically nonfusogenic chlamydial inclusions and stimulate fusion with autophagosomes, hGBP1/2 disable a major chlamydial virulence mechanism and contribute to IFNG-mediated pathogen clearance.
Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53–MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen’s anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection.
The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.