Proactive inspection is essential for prediction and prevention of rolling stock component failures. The conventional process for inspecting bogies under trains presents significant challenges for inspectors who need to visually check the tight and cluttered environment. We propose a miniature multi-link climbing robot, called BogieBot, that can be deployed inside the undercarriage areas of trains and other large vehicles for inspection and maintenance purposes, for the first time. BogieBot can carry a visual sensor or manipulator on its main body. The novel compact design utilises six identical couple joints and two mechanically switchable magnetic grippers that together, empower multi-modal climbing and manipulation. The proposed mechanism is kinematically redundant, allowing the robot to perform self-motions in a tight space and manoeuvre around obstacles. The mechanism design and various analyses on the forward and inverse kinematic, work-space, and selfmotions of BogieBot are presented. The robot is demonstrated to perform challenging navigation tasks in different scenarios involving simulated complex environments.
In this paper, we present a backstepping adaptive hybrid force/position control based on Barrier Lyapunov Function for a robotic manipulator to prevent constraint violation of applied force and position simultaneously. First, the task space is partitioned according to the constrained and unconstrained directions, and a new representation of dynamics is introduced. Next, force/position control is applied using the strict-feedback backstepping technique, in which a time-varying Barrier Lyapunov Function is employed to ensure that the force and position do not violate their constraints. Finally, to deal with uncertainty, disturbance and non-linearity of the system, an adaptive radial basis function neural network (RBFNN) is also implemented in the control algorithm. Stability proof of the proposed control method is presented, and simulation studies on a 2-link manipulator show the effectiveness as well as the performance of the proposed controller in preventing constraint violation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.