This paper explores the effect of design variables on the objective functions of clipped delta wing with a modified double-wedge airfoil section based on parametric analysis and CFD-based optimization using response surface method. This type of wing is used in air-launch-to-orbit vehicles. The thickness, wing-span, tip chord, leading edge radius, front diagonal edge and rear diagonal edge lengths are defined as design variables and aerodynamic efficiency, drag and lift coefficients as objective functions. The analysis was performed at Mach 0.85 and 1.2 and for several angle of attack (AOA). The optimization process is performed by numerical stimulation of the flow around the wing at different Mach numbers and AOAs for the deformed geometry at each step including 368 cases. Minimizing the drag force and maximizing both lift coefficient and aerodynamic efficiency have been selected as optimization goal. The evolutionary optimization technique of NSGA-II (Nondominated Sorted Genetic Algorithm-II) in combination with the RSM has been used, which leads to distinct but very close candidates for each flight conditions. Defining the critical design point, it can be deduced the aerodynamic efficiency will be increased by 50% compared with base wing model. Finally, it is shown that the best point for optimizing the air-launched vehicle equipped with delta wing in the ascent trajectory, is the maximum angle of attack that occurs at Mach 1.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.