This research investigated the impact of leaching on the compressibility and shear strength properties of undisturbed and cement-treated Champlain Sea clay. A total of five undisturbed clay samples were leached with distilled water in the laboratory to reduce the salinity from initial values ranging from 9.5 to 15 g/L to the salinity values of 2.75, 1.45, 1.03, 0.55, and 0.35 g/L. A series of geotechnical tests were conducted on these samples at different salinity levels, including constant rate of strain consolidation tests, consolidated isotropic undrained triaxial compression tests, and vane shear tests. The experimental results showed that leaching leads to an increase in the compressibility and a reduction in shear strength of undisturbed Champlain Sea clay. The experimental results revealed that cement, mixed at a dosage of 50 kg/m3 , can significantly decrease the compressibility and increase the shear strength of Champlain Sea clay. A leached cement-treated sample exhibits a relatively higher compressibility than that of unleached cementtreated one. An increase in compressibility was also observed as salinity declines for the cementtreated samples. Moreover, a cement-treated sample at a lower salinity level displays slightly a higher shear strength compared to that of a cement-treated sample at the original salinity level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.