In this research, a novel wide-band microstrip antenna for wideband applications is proposed. The proposed antenna consists of a square radiating patch and a partial ground plane with a smal rectangular notch-shape. Two symmetrical U-slots are etched in radiating patch. The defected microstrip U-shapes and the small notch improve the antenna characterestics such impedance wideband and the gain along the transmission area. The proposed antenna is simulated on an FR4 substrate of a dielectric constant of 4.3, thickness 1.6 mm, permittivity 4.4, and loss tangent 0.018. The simulation and optimization results are carried out using CST software.The antenna topology occupies an area of 30 × 40 × 0.8 mm 3 or about 0.629λg × 0.839λg × 0.017λg at 3 GHz (the centerresonance frequency). The antenna covers the range of 2.1711 to 4.0531 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX) and LTE (Long Term Evolution) band applications. Good VSWR, return loss and radiation pattern characteristics are obtained in the frequency band of interest. The obtained Simulation results for this antenna depict that it exhibits good radiation behavior within the transmission frequency range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.