In this paper, we study the indirect boundary stability and exact controllability of a one-dimensional Timoshenko system. In the first part of the paper, we consider the Timoshenko system with only one boundary fractional damping. We first show that the system is strongly stable but not uniformly stable. Hence, we look for a polynomial decay rate for smooth initial data. Using frequency domain arguments combined with the multiplier method, we prove that the energy decay rate depends on coefficients appearing in the PDE and on the order of the fractional damping. Moreover, under the equal speed propagation condition, we obtain the optimal polynomial energy decay rate. In the second part of this paper, we study the indirect boundary exact controllability of the Timoshenko system with mixed Dirichlet–Neumann boundary conditions and boundary control. Using non-harmonic analysis, we first establish a weak observability inequality, which depends on the ratio of the waves propagation speeds. Next, using the HUM method, we prove that the system is exactly controllable in appropriate spaces and that the control time can be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.