Background: Although injuries experienced during hurricanes and other tropical cyclones have been relatively well-characterized through traditional surveillance, less is known about tropical cyclones' impacts on noninjury morbidity, which can be triggered through pathways that include psychosocial stress or interruption in medical treatment. Methods: We investigated daily emergency Medicare hospitalizations (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010) in 180 US counties, drawing on an existing cohort of high-population counties. We classified counties as exposed to tropical cyclones when storm-associated peak sustained winds were ≥21 m/s at the county center; secondary analyses considered other wind thresholds and hazards. We matched storm-exposed days to unexposed days by county and seasonality. We estimated change in tropical cyclone-associated hospitalizations over a storm period from 2 days before to 7 days after the storm's closest approach, compared to unexposed days, using generalized linear mixed-effect models. Results: For 1999-2010, 175 study counties had at least one tropical cyclone exposure. Cardiovascular hospitalizations decreased on the storm day, then increased following the storm, while respiratory hospitalizations were elevated throughout the storm period. Over the 10-day storm period, cardiovascular hospitalizations increased 3% (95% confidence interval = 2%, 5%) and respiratory hospitalizations increased 16% (95% confidence interval = 13%, 20%) compared to matched unexposed periods. Relative risks varied across tropical cyclone exposures, with strongest association for the most restrictive wind-based exposure metric. Conclusions: In this study, tropical cyclone exposures were associated with a short-term increase in cardiorespiratory hospitalization risk among the elderly, based on a multi-year/multi-site investigation of US Medicare beneficiaries ≥65 years.
Background: Tropical cyclone epidemiology can be advanced through exposure assessment methods that are comprehensive and consistent across space and time, as these facilitate multiyear, multistorm studies. Further, an understanding of patterns in and between exposure metrics that are based on specific hazards of the storm can help in designing tropical cyclone epidemiological research. Objectives: a ) Provide an open-source data set for tropical cyclone exposure assessment for epidemiological research; and b ) investigate patterns and agreement between county-level assessments of tropical cyclone exposure based on different storm hazards. Methods: We created an open-source data set with data at the county level on exposure to four tropical cyclone hazards: peak sustained wind, rainfall, flooding, and tornadoes. The data cover all eastern U.S. counties for all land-falling or near-land Atlantic basin storms, covering 1996–2011 for all metrics and up to 1988–2018 for specific metrics. We validated measurements against other data sources and investigated patterns and agreement among binary exposure classifications based on these metrics, as well as compared them to use of distance from the storm’s track, which has been used as a proxy for exposure in some epidemiological studies. Results: Our open-source data set was typically consistent with data from other sources, and we present and discuss areas of disagreement and other caveats. Over the study period and area, tropical cyclones typically brought different hazards to different counties. Therefore, when comparing exposure assessment between different hazard-specific metrics, agreement was usually low, as it also was when comparing exposure assessment based on a distance-based proxy measurement and any of the hazard-specific metrics. Discussion: Our results provide a multihazard data set that can be leveraged for epidemiological research on tropical cyclones, as well as insights that can inform the design and analysis for tropical cyclone epidemiological research. https://doi.org/10.1289/EHP6976
Smoke impacts from large wildfires are mounting, and the projection is for more such events in the future as the one experienced October 2017 in Northern California, and subsequently in 2018 and 2020. Further, the evidence is growing about the health impacts from these events which are also difficult to simulate. Therefore, we simulated air quality conditions using a suite of remotely-sensed data, surface observational data, chemical transport modeling with WRF-CMAQ, one data fusion, and three machine learning methods to arrive at datasets useful to air quality and health impact analyses. To demonstrate these analyses, we estimated the health impacts from smoke impacts during wildfires in October 8-20, 2017, in Northern California, when over 7 million people were exposed to Unhealthy to Very Unhealthy air quality conditions. We investigated using the 5-min available GOES-16 fire detection data to simulate timing of fire activity to allocate emissions hourly for the WRF-CMAQ system. Interestingly, this approach did not necessarily improve overall results, however it was key to simulating the initial 12-hr explosive fire activity and smoke impacts. To improve these results, we applied one data fusion and three machine learning algorithms. We also had a unique opportunity to evaluate results with temporary monitors deployed specifically for wildfires, and performance was markedly different. For example, at the permanent monitoring locations, the WRF-CMAQ simulations had a Pearson correlation of 0.65, and the data fusion approach improved this (Pearson correlation = 0.95), while at the temporary monitor locations across all cases, the best Pearson correlation was 0.5. Overall, WRF-CMAQ simulations were biased high and the geostatistical methods were biased low. Finally, we applied the optimized PM 2.5 exposure estimate in an exposure-response function. Estimated mortality attributable to PM 2.5 exposure during the smoke episode was 83 (95% CI: 0, 196) with 47% attributable to wildland fire smoke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.