Following the significant reservoir depletion on Elgin / Franklin fields since 2007, drilling infill wells was considered to not only be high cost but also carry a high probability of failure to reach the well objective. The recent campaign on the Elgin field, one of the most heavily depleted reservoirs worldwide, demonstrated that infill drilling can be achieved safely while improving performance. Drilling of HPHT infill wells on the Elgin field faced increasing challenges arising from the reduction of reservoir pressure that changed the stresses in the formations above and influenced the overall pressure regime. This stress reorganization in the overburden has affected the fracture network in these formations resulting in reduction in Fracture Initiation Pressure (FIP) and increase of gas levels. Challenges were faced during the drilling of three wells in the 2015-2017 campaign. Loss events in Chalk formations in the intermediate sections significantly decreased the already Narrow Mud Weight Window (NMWW). A strategy to define and validate the minimum required MWW in 12-1/2" and 8-1/2" sections was developed following a complex subsurface well control event. Managed Pressure Drilling (MPD) technique was extensively used to safely manage gas levels and assess pore pressure. Reservoir entry with more than 850 bar of overbalance remains the main challenge in infill drilling. A total loss event during first reservoir entry in the latest campaign confirmed the limitations of wellbore strengthening mud and stress caging materials available today. Lessons learned from each well in this campaign were implemented to address these challenges and improve performance. This paper describes the Elgin HP/HT infill drilling experience and the specific techniques and practices that were developed to address these challenges and improve performance. The importance of Equivalent Circulating Density (ECD) management with very narrow MWW, successful high gas level management with MPD and depleted reservoir entry, shows that even in a highly complex environment, drilling performance can be improved allowing for further economical development drilling. The successful and safe delivery of the Elgin 2015-2017 infill drilling campaign demonstrates this at a time the industry moves toward unlocking the reserves of more challenging HPHT fields.
Challenging conditions in a HP/HT well in the UK Central North Sea, led to the deployment of a contingent expandable liner. Under-reaming tools were needed to facilitate running of the contingent liner. Under-reaming operations are associated with a degree of uncertainty on the final hole diameter. A technology was deployed to monitor cutter position, wear and vibrations. With the aim of removing the above uncertainty. An open-hole calliper run was performed to validate the technology. The monitoring system utilizes an arrangement of sensors to measure variables that are critical to under-reaming operations. The sensors are housed within the expandable cutting structure of the under-reamer and comprises of a cutter block position indicator and a PDC cutting structure wear sensor. The monitoring system can also record downhole dynamics at the under-reamer. The system can therefore determine, via memory data, the actual under-reamer extension size at any point during the run, therefore allowing the minimum hole diameter to be derived. Providing immediate feedback at the rig site once the tool is at surface. The first run globally of the 12 ¼" × 14" size is presented, the monitoring system recorded 187 hrs of data. The cutter blocks position sensor showed the cutting structure was fully expanded as required whilst pumping at drilling flow rate once the tool was activated. The wear sensors were fully active and showed no wear for the duration of the systems battery life. A combination of the positional and wear sensors indicated full gauge hole to the recorded depth. Due to the type of contingent liner the delivery of gauge hole was critical. As such, the data was validated using a dedicated open-hole calliper run on wireline. The calliper confirmed the open-hole diameter calculated based on data provided by the wear and position sensors. Based on this result the requirement for an open-hole calliper run can be reconsidered. In addition, the acceleration recorded was well correlated with the MWD recorded vibration data and allowed parameter recommendations to be generated. The ability to monitor the position and status of the under-reamer cutting structure eliminates uncertainty on the final hole size following under-reaming operations and identifies any problem areas and their probable causes prior to running casing/liner. In turn this has the potential to eliminate the need for wireline runs and therefore reduce the open-hole time in a potentially unstable formation.
This paper discusses installation of the longest high-performance (HP) and rotating 11-3/4" expandable liner on the Elgin field in the Central-North Sea sector of the UK that enabled isolating weak layers in the overburden formations on EIE well, providing sufficient mud weight window to permit drilling high pressure and gas bearing zones. The planning and execution of this record presented challenges beyond those encountered in standard well conditions due to narrow mud weight window (NMWW) and critical requirement of zonal isolation. EIE well was the third of the 2015-2017 infill campaign on Elgin field. The well faced major challenges in the 12-1/2" section due to the NMWW which triggered the deployment of the contingent well architecture with HP 11-3/4" expandable liner. This critical requirement of zonal isolation significantly impacted the preparation and risk assessment of expandable liner operations. A new expansion assembly design was implemented to allow rotation of the 11-3/4" size system to improve the cement job quality. Moreover, all contingency procedures were significantly modified to ensure that the objective of the specific well constraints were considered. After under-reaming while drilling 12-1/4" × 14" section down to planned depth, 860m of 11-3/4" liner was run with no open hole problems. This liner was successfully rotated at bottom prior to pumping cement and fully expanded without incident. The system was successfully pressure tested prior to drill-out of the plugs and the shoe assembly was drilled with no issues. Running of an 860m HP 11-3/4" expandable liner and rotating shoe assembly on EIE well is a record (longest HP string run before was 360m) and considered as a remarkable achievement. However, liner objectives were not fully met and cement squeeze below the shoe had to be performed. Post-job investigation highlighted issues related to dart selection and related cement over-displacement, limited contingences in case of expansion pressure loss, and the ability to pull the liner to surface in a NMWW. These issues remain to be solved for optimisation of future deployments. This paper provides information on the design and operational aspects that should be considered for expandable liner operations on complex wells with NMWW. Understanding advantages and limitations of the system will open up opportunities to improve the technology and help to reduce operational risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.