Autonomous vehicles are being developed rapidly in recent years. In advance implementation stages, many particular problems must be solved to bring this technology into the market place. This paper focuses on the problem of driving in snow and wet road surface environments. First, the quality of LIDAR reflectivity decreases on wet road surfaces. Therefore, an accumulation strategy is designed to increase the density of online LIDAR images. In order enhance the texture of the accumulated images, Principal Component Analysis (PCA) is used to understand the geometrical structures and texture patterns in the map images. The LIDAR images are then reconstructed using the leading principal components with respect to the variance distribution accounted by each eigenvector. Second, the appearance of snow lines deforms the expected road context in LIDAR images. Accordingly, the edge profiles of the LIDAR and map images are extracted to encode the lane lines and roadside edges. Edge matching between the two profiles is then calculated to improve localization in the lateral direction. The proposed method has been tested and evaluated using real data that collected during the winter of 2016/2017 in Suzu and Kanazawa, Japan. The experimental results show that the proposed method increases the robustness of autonomous driving on wet road surfaces, provides a stable performance in laterally localizing the vehicle in the presence of snow lines and significantly reduces the overall localization error at a speed of 60km/h.
Index Terms-Autonomous vehicles, laser imaging detection and ranging (LIDAR), autonomous localization, principal component analysis (PCA), template matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.