Brain image segmentation is one of the most important parts of clinical diagnostic tools. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. However, the process of accurate segmentation of these images is very important and crucial for a correct diagnosis by clinical tools. We presented a review of the methods used in brain segmentation. The review covers imaging modalities, magnetic resonance imaging and methods for noise reduction, inhomogeneity correction and segmentation. We conclude with a discussion on the trend of future research in brain segmentation.
Identifying the informative genes has always been a major step in microarray data analysis. The complexity of various cancer datasets makes this issue still challenging. In this paper, a novel Bio-inspired Multi-objective algorithm is proposed for gene selection in microarray data classification specifically in the binary domain of feature selection. The presented method extends the traditional Bat Algorithm with refined formulations, effective multi-objective operators, and novel local search strategies employing social learning concepts in designing random walks. A hybrid model using the Fisher criterion is then applied to three widely-used microarray cancer datasets to explore significant biomarkers which reveal the effectiveness of the proposed method for genomic analysis. Experimental results unveil new combinations of informative biomarkers have association with other studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.