Neuroinflammation, immune reactivity and mitochondrial abnormalities are considered as causes and/or contributors to neuronal degeneration. Peroxisome proliferator-activated receptors (PPARs) regulate both inflammatory and multiple other pathways that are implicated in neurodegeneration. In the present study, we investigated the efficacy of fenofibrate (Tricor), a pan-PPAR agonist that activates PPAR-α as well as other PPARs. We administered fenofibrate to superoxide dismutase 1 (SOD1(G93A)) mice daily prior to any detectable phenotypes and then animal behavior, pathology and longevity were assessed. Treated animals showed a significant slowing of the progression of disease with weight loss attenuation, enhanced motor performance, delayed onset and survival extension. Histopathological analysis of the spinal cords showed that neuronal loss was significantly attenuated in fenofibrate-treated mice. Mitochondria were preserved as indicated by Cytochrome c immunostaining in the spinal cord, which maybe partly due to increased expression of the PPAR-γ co-activator 1-α. The total mRNA analysis revealed that neuroprotective and anti-inflammatory genes were elevated, while neuroinflammatory genes were down-regulated. This study demonstrates that the activation of PPAR-α action via fenofibrate leads to neuroprotection by both reducing neuroinflammation and protecting mitochondria, which leads to a significant increase in survival in SOD1(G93A) mice. Therefore, the development of therapeutic strategies to activate PPAR-α as well as other PPARs may lead to new therapeutic agents to slow or halt the progression of amyotrophic lateral sclerosis.
Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Transgenic mouse lines overexpressing wild-type or mutant TDP-43 exhibit ALS-like symptom, motor abnormalities and early paralysis followed by death. Reports on lifespan and phenotypic behaviour in Prp-TDP-43 (A315T) vary, and these animals are not fully characterized. Although it has been proposed that the approximate 20% loss of motor neurons at end stage is responsible for the severe weakness and death in TDP-43 mice, this degree of neurologic damage appears insufficient to cause death. Hence we studied these mice to further characterize and determine the reason for the death. Our characterization of TDP-43 transgenic mice showed that these mice develop ALS-like symptoms that later become compounded by gastrointestinal (GI) complications that resulted in death. This is the first report of a set of pathological evidence in the GI track that is strong indicator for the cause of death of Prp-hTDP-43 (A315T) transgenic mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.