Two psychophysical experiments examined multisensory integration of visual-auditory (Experiment 1) and visual-tactile-auditory (Experiment 2) signals. Participants judged the location of these multimodal signals relative to a standard presented at the median plane of the body. A cue conflict was induced by presenting the visual signals with a constant spatial discrepancy to the other modalities. Extending previous studies, the reliability of certain modalities (visual in Experiment 1, visual and tactile in Experiment 2) was varied from trial to trial by presenting signals with either strong or weak location information (e.g., a relatively dense or dispersed dot cloud as visual stimulus). We investigated how participants would adapt to the cue conflict from the contradictory information under these varying reliability conditions and whether participants had insight to their performance. During the course of both experiments, participants switched from an integration strategy to a selection strategy in Experiment 1 and to a calibration strategy in Experiment 2. Simulations of various multisensory perception strategies proposed that optimal causal inference in a varying reliability environment not only depends on the amount of multimodal discrepancy, but also on the relative reliability of stimuli across the reliability conditions.
In conflict tasks, like the Simon task, it is usually investigated how task-irrelevant information affects the processing of task-relevant information. In the present experiments, we extended the Simon task to a multimodal setup, in which task-irrelevant information emerged from two sensory modalities. Specifically, in Experiment 1, participants responded to the identity of letters presented at a left, right, or central position with a left- or right-hand response. Additional tactile stimulation occurred on a left, right, or central position on the horizontal body plane. Response congruency of the visual and tactile stimulation was orthogonally varied. In Experiment 2, the tactile stimulation was replaced by auditory stimulation. In both experiments, the visual task-irrelevant information produced congruency effects such that responses were slower and less accurate in incongruent than incongruent conditions. Furthermore, in Experiment 1, such congruency effects, albeit smaller, were also observed for the tactile task-irrelevant stimulation. In Experiment 2, the auditory task-irrelevant stimulation produced the smallest effects. Specifically, the longest reaction times emerged in the neutral condition, while incongruent and congruent conditions differed only numerically. This suggests that in the co-presence of multiple task-irrelevant information sources, location processing is more strongly determined by visual and tactile spatial information than by auditory spatial information. An extended version of the Diffusion Model for Conflict Tasks (DMC) was fitted to the results of both experiments. This Multimodal Diffusion Model for Conflict Tasks (MDMC), and a model variant involving faster processing in the neutral visual condition (FN-MDMC), provided reasonable fits for the observed data. These model fits support the notion that multimodal task-irrelevant information superimposes across sensory modalities and automatically affects the controlled processing of task-relevant information.
Panoptic segmentation has recently unified semantic and instance segmentation, previously addressed separately, thus taking a step further towards creating more comprehensive and efficient perception systems. In this paper, we present Panoster, a novel proposal-free panoptic segmentation method for LiDAR point clouds. Unlike previous approaches relying on several steps to group pixels or points into objects, Panoster proposes a simplified framework incorporating a learning-based clustering solution to identify instances. At inference time, this acts as a class-agnostic segmentation, allowing Panoster to be fast, while outperforming prior methods in terms of accuracy. Without any post-processing, Panoster reached state-of-theart results among published approaches on the challenging SemanticKITTI benchmark, and further increased its lead by exploiting heuristic techniques. Additionally, we showcase how our method can be flexibly and effectively applied on diverse existing semantic architectures to deliver panoptic predictions.
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings. In perception for autonomous driving, measuring the uncertainty means providing additional calibrated information to downstream tasks, such as path planning, that can use it towards safe navigation. In this work, we propose a novel sampling-free uncertainty estimation method for object detection. We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size. To achieve this, we propose an uncertainty-aware heatmap, and exploit the neighboring bounding boxes provided by the detector at inference time. We evaluate the detection performance and the quality of the different uncertainty estimates separately, also with challenging out-of-domain samples: BDD100K and nuImages with models trained on KITTI. Additionally, we propose a new metric to evaluate location and size uncertainties. When transferring to unseen datasets, CertainNet generalizes substantially better than previous methods and an ensemble, while being real-time and providing high quality and comprehensive uncertainty estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.