Proposed higher power density HTGR by removing the graphite sleeve and implementing the SiC matrix fuel compact has neutronics problem on criticality. Present study selected Er burnable poison and Pu fissile material as possible candidate to compensate the reactivity. To ensure core performance of HTTR modeled reactors, the various tests were carried out using Serpent 2 code, and nuclear characteristic data were obtained successfully. The obtained results verified the expected characteristics. It was demonstrated that both Er and Pu solved criticality issue. Furthermore, especially Pu-loaded core showed better burn-up performance compared to current HTGR. One possible option that proposed reactor can also burn Pu safely based on the concept of small-Clean Burn-HTGR was concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.