The disproportionate imbalance between the systemic manifestation of reactive oxygen species and body’s ability to detoxify the reactive intermediates is referred to as oxidative stress. Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. The cells’ ability to handle such pro-oxidant species is impeded by viral infections particularly within liver that plays an important role in metabolism and detoxification of harmful substances. During liver diseases (such as hepatocellular or cholestatic problems), the produced ROS are involved in transcriptional activation of a large number of cytokines and growth factors, and continued production of ROS and Reactive Nitrogen Species (RNS) feed into the vicious cycle. Many human viruses like HCV are evolved to manipulate this delicate pro- and antioxidant balance; thus generating the sustainable oxidative stress that not only causes hepatic damage but also stimulates the processes to reduce treatment of damage. In this review article, the oxidant and antioxidant pathways that are perturbed by HCV genes are discussed. In the first line of risk, the pathways of lipid metabolism present a clear danger in accumulation of viral induced ROS. Viral infection leads to decrease in cellular concentrations of glutathione (GSH) resulting in oxidation of important components of cells such as proteins, DNA and lipids as well as double strand breakage of DNA. These disorders have the tendency to lead the cells toward cirrhosis and hepatocellular carcinoma in adults due to constant insult. We have highlighted the importance of such pathways and revealed differences in the extent of oxidative stress caused by HCV infection.
Evidence for the tickborne nature of Alkhurma hemorrhagic fever virus (AHFV) is indirect because AHFV has not been detected in arthropods. One Ornithodoros savignyi tick from Saudi Arabia contained AHFV RNA. This is the first direct evidence that AHFV is a tickborne flavivirus and confirms the association between human AHFV cases and tickbite history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.