A dual-band, compact, high-gain, simple geometry, wideband antenna for 5G millimeter-wave applications at 28 and 38 GHz is proposed in this paper. Initially, an antenna operating over dual bands of 28 and 38 GHz was designed. Later, a four-port Multiple Input Multiple Output (MIMO) antenna was developed for the same dual-band applications for high data rates, low latency, and improved capacity for 5G communication devices. To bring down mutual coupling between antenna elements, a parasitic element of simple geometry was loaded between the MIMO elements. After the insertion of the parasitic element, the isolation of the antenna improved by 25 dB. The suggested creation was designed using a Rogers/Duroid RT-5870 laminate with a thickness of 0.79 mm. The single element proposed has an overall small size of 13 mm × 15 mm, while the MIMO configuration of the proposed work has a miniaturized size of 28 mm × 28 mm. The parasitic element-loaded MIMO antenna offers a high gain of 9.5 and 11.5 dB at resonance frequencies of 28 GHz and 38 GHz, respectively. Various MIMO parameters were also examined, and the results generated by the EM tool CST Studio Suite® and hardware prototype are presented. The parasitic element-loaded MIMO antenna offers an Envelop Correlation Coefficient (ECC) < 0.001 and Channel Capacity Loss (CCL) < 0.01 bps/Hz, which are quite good values. Moreover, a comparison with existing work in the literature is given to show the superiority of the MIMO antenna. The suggested MIMO antenna provides good results and is regarded as a solid candidate for future 5G applications according to the comparison with the state of the art, results, and discussion.
The gradual shift towards cleaner and green energy sources requires the application of electric vehicles (EVs) as the mainstream transportation platform. The application of vehicle-to-grid (V2G) shows promise in optimizing the power demand, shaping the load variation, and increasing the sustainability of smart grids. However, no comprehensive paper has been compiled regarding the of operation of V2G and types, current ratings and types of EV in sells market, policies relevant to V2G and business model, and the implementation difficulties and current procedures used to cope with problems. This work better represents the current challenges and prospects in V2G implementation worldwide and highlights the research gap across the V2G domain. The research starts with the opportunities of V2G and required policies and business models adopted in recent years, followed by an overview of the V2G technology; then, the challenges associated with V2G on the power grid and vehicle batteries; and finally, their possible solutions. This investigation highlighted a few significant challenges, which involve a lack of a concrete V2G business model, lack of stakeholders and government incentives, the excessive burden on EV batteries during V2G, the deficiency of proper bidirectional battery charger units and standards and test beds, the injection of harmonics voltage and current to the power grid, and the possibility of uneconomical and unscheduled V2G practices. Recent research and international agency reports are revised to provide possible solutions to these bottlenecks and, in places, the requirements for additional research. The promise of V2G could be colossal, but the scheme first requires tremendous collaboration, funding, and technology maturation.
M -ary chirp modulated signals are described and illustrated as a function of modulation parameters-h, the peak-topeak frequency deviation divided by the symbol rate; and w, the frequency sweep width divided by the symbol rate. The detection of these signals in AWGN channel is addressed and optimum receiver structures for both coherent and non-coherent cases are derived. Closed-form expressions for symbol error probabilities for these receivers have been obtained. Optimum 2−, 4−, and 8−ary coherent chirp systems that minimize symbol error rate have been determined. The performances of both coherent and non-coherent M -ary chirp systems are compared with respective conventional M -ary digital modulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.