Abstract. Body size is a standard criterion of quality control in insect rearing and often assumed to correlate with fitness in parasitoid wasps, but various metrics of body size can be used. The purpose of this study was to determine which morphological feature provides the best correlation with body size and egg load in a thelytokous population of the parasitoid wasp, Lysiphlebus fabarum (Marshall), when reared on Aphis fabae Scopoli under standardized conditions in a growth chamber (21 ± 1°C, 60-70% RH, and 16L : 8D). Candidate metrics included head width, length and width of the pronotum, length and width of the right forewing, and length of the right hind tibia. In the first experiment, correlations were determined between these measurements and overall wasp body length. As head width and hind tibia length emerged as the most suitable proxies for total body length, the next experiment these two variables as proxies for egg load in females reared from different nymphal instars of the host aphid. There was a non-linear relationship between body size and egg load of wasps emerging from hosts parasitized in different nymphal instars. Egg load increased linearly with body size across all host growth stages, but the second nymphal instar was the most suitable stage for parasitism when speed of development was factored in. The results suggest that head width is a suitable morphometric for monitoring quality control in mass-reared cultures of this wasp.
This study tested effects of maternal body size on foraging behavior and progeny development in a thelytokous population of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). Small and large wasps were reared from first and second instar hosts [black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae)], respectively, and each was provided with a patch (bean leaf disk) containing either 15 small (second instar) or 15 large (fourth instar) hosts for a 30-min foraging period. Neither body size nor host size affected time allocation to various behaviors within a patch, but second instar aphids produced significantly more mummies than fourth instars. The preferred attack orientation was from the side of the aphid, suggesting wasps were sensitive to the risk of smearing with cornicle secretions. Few wasps developed in fourth instar hosts, suggesting later host instars were somewhat resistant to parasitism. Second instar hosts, the most suitable stage for L. fabarum development, relied more on defensive behavior, specifically kicking and secreting cornicle droplets. Large wasps were more likely to elicit a double cornicle secretion, indicating that aphids graded their response to the size of the attacker. Larger wasps were also more likely to be smeared with cornicle secretion, suggesting they were more vulnerable than small wasps. Although small wasps had smaller eggs than large wasps, there was no effect of maternal egg size on the size of progeny. However, daughters of small females emerged with larger egg loads than daughters of large mothers, and their eggs tended to be slightly smaller, although not significantly. Regression analysis revealed a positive correlation between maternal egg size and progeny developmental time for small and large wasps, and between maternal egg size and progeny egg load for small wasps. These results confirm maternal effects of body size in an aphid parasitoid, and reveal that vulnerability to host behavioral defenses is also body size dependent.
1. This study examined biological characteristics of sexual and asexual strains of the parasitoid wasp, Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae).2. Strains were reared in different instar hosts (the black bean aphid, Aphis fabae Scopoli) under identical environmental conditions (21 ∘ C, 65-75% RH, and LD 16:8 h).3. Results showed that the second instar of the aphid is the most suitable growth stage for both strains, as the wasps that emerged from the second instar hosts were larger, more fecund, and had larger egg size. Trade-offs between the fitness components of the parasitoid were clearer when the parasitoids were reared in suboptimal instars.4. According to the results, sexual females emerged around 1 day earlier and lived around 0.5 day less than asexual females. Also, sexual females emerged with a lower initial egg load, although these wasps tend to have larger eggs than asexual females. Asexual females may enjoy greater longevity and higher developmental plasticity which suggests a higher degree of synchronization with pest population dynamism.5. The results suggest that sexual wasps, in contrast to asexual wasps, invest more in egg size than in egg load. This study suggests strain-specific adaptations of L. fabarum to different instars of the black bean aphid by which the allocation of nutritional resources to various functions differs between strains.6. Furthermore, differences in life history traits between strains can greatly influence the population dynamics of each strain, and hence their effectiveness in suppressing pest populations.
Animals are able to assess the risk of predation and respond accordingly via behavioural and physiological changes. Web-building spiders are in the unique situation where they reside in the middle of their web and are therefore relatively exposed to predators. Thus, these spiders might moderate either their web-building behaviour or their behaviour on the web when exposed to the threat of predation. In this study, we experimentally explored how predatory chemical cues influence foraging behaviour and metabolic rate in female of the orb-web spider, Argiope keyserlingi. We found that female spiders restricted their foraging time budget when exposed to the predatory cues from a praying mantid: they responded 11 percent and 17 percent quicker to a vibratory stimulus compare to control and non-predator cues, respectively, and spent less time handling the prey. Moreover, spiders were less likely to rebuild the web under predatory cues. Female A. keyserlingi exposed to the praying mantid cue significantly elevated their metabolic rate compared to the control group. Our findings revealed short-term modifications over two weeks of the trials in foraging behaviour and physiology of female spiders in response to predator cues. This study suggests that under predator cues the spiders move quicker and this could be facilitated by elevation in metabolic rate. Reduced foraging activity and less frequent web repair/rebuilding would also reduce the spiders’ exposure to praying mantid predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.