This paper presents an elegant yet straightforward design procedure for a compact rat-race coupler (RRC) with an extended harmonic suppression. The coupler's conventional λ/4 transmission lines (TLs) are replaced by a specialized TL that offers significant size reduction and harmonic elimination capabilities in the proposed approach. The design procedure is verified through the theoretical, circuit, and electromagnetic (EM) analyses, showing excellent agreement among different analyses and the measured results. The circuit and EM results show that the proposed TL replicates the same frequency behaviour of the conventional one at the design frequency of 1.8 GHz while enables harmonic suppression up to the 7 th harmonic and a size reduction of 74%. According to the measured results, the RRC has a fractional bandwidth of 20%, with input insertion losses of around 0.2 dB and isolation level better than 35 dB. Furthermore, the total footprint of the proposed RRC is only 31.7 mm × 15.9 mm, corresponding to 0.28 λ × 0.14 λ, where λ is the guided wavelength at 1.8 GHz.
In this paper, a compact microstrip rat-race coupler at a 950 MHz operating frequency is designed, simulated, and fabricated. New branches are proposed in this design using high-/low- impedance open-ended resonators. In the conventional rat-race coupler, there are three long λ/4 branches and a 3λ/4 branch, and they occupy a very large area. In the presented designed, three compact branches are proposed for use instead of three λ/4 branches and an ultra-compact branch is suggested for use instead of the 3λ/4 branch. Additionally, an artificial neural network (ANN) approach is incorporated to improve the performance of the resonators using a radial basis function (RBF) network. The proposed compact structure has achieved a reduction of more than 82% compared with the size of the conventional coupler structures. Additionally, the proposed coupler can suppress the 2nd up to the 5th harmonic to improve the performance of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.