Background: Pulmonary or benign nodules are classified as nodules with a diameter of 3 cm or less and defined as non-cancerous nodules. The early diagnosis of malignant lung nodules is important for a more reliable prognosis of lung cancer and less invasive chemotherapy and radiotherapy procedures.Objective: This study aimed to introduce an improved hybrid approach for efficient nodule mask generation and false-positive reduction. Material and Methods:In this experimental study, nodule segmentation preprocessing was conducted to prepare the input computed tomography (CT) scans for the U-Net convolutional neural network (CNN) model, and includes the normalization of CT scans and transfer of pixel values corresponding to the radiodensity of Hounsfield Units (HU). A U-Net CNN was developed based on lung CT scans for nodule identification. Results:The U-net model converged to a dice coefficient of 0.678 with a sensitivity of 75%. Many false positives were considered in every real positive, at 11.1, reduced in the proposed CNN to 2.32 FPs (False Positive) per TP (True Positive). Conclusion:Based on the disadvantages of the largest nodule, the similarity of extracted features of the current study with those of others was imperative. The improved hybrid approach introduced was useful for other image classification tasks as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.