Antibiotic resistance (ABR) is recognized as a One Health challenge because of the rapid emergence and dissemination of resistant bacteria and genes among humans, animals and the environment on a global scale. However, there is a paucity of research assessing ABR contemporaneously in humans, animals and the environment in low-resource settings. This critical review seeks to identify the extent of One Health research on ABR in low- and middle-income countries (LMICs). Existing research has highlighted hotspots for environmental contamination; food-animal production systems that are likely to harbour reservoirs or promote transmission of ABR as well as high and increasing human rates of colonization with ABR commensal bacteria such as However, very few studies have integrated all three components of the One Health spectrum to understand the dynamics of transmission and the prevalence of community-acquired resistance in humans and animals. Microbiological, epidemiological and social science research is needed at community and population levels across the One Health spectrum in order to fill the large gaps in knowledge of ABR in low-resource settings.
BackgroundUnsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity.Methodology/Principal FindingsA total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates.SignificanceMulti-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas.
Background: There is increasing concern around the use of antibiotics in animal food production and the risk of transmission of antimicrobial resistance within the food chain. In many low and middle-income countries, including Bangladesh, the commercial poultry sector comprises small-scale producers who are dependent on credit from poultry dealers to buy day-old chicks and poultry feed. The same dealers also supply and promote antibiotics. The credit system is reliant upon informal relationships among multiple actors as part of social capital. This paper aims to describe dependencies and relationships between different actors within unregulated broiler poultry production systems to understand the social and contextual determinants of antibiotic use in low-resource settings. Methods: We used a cross-sectional qualitative design including in-depth interviews among purposefully selected commercial poultry farmers (n = 10), poultry dealers (n = 5), sales representatives of livestock pharmaceutical companies (n = 3) and the local government livestock officer as a key-informant (n = 1). We describe the food production cycle and practices relating to credit purchases and sales using social capital theory. Findings: Poultry dealers provide credit and information for small-scale poultry farmers to initiate and operate their business. In return for credit, farmers are obliged to buy poultry feed and medicine from their dealer and sell their market-ready poultry to that same dealer. All farms applied multiple antibiotics to poultry throughout the production cycle, including banned antibiotics such as colistin sulfate. The relationship between dealers and poultry farmers is reciprocal but mostly regulated by the dealers. Dealers were the main influencers of decision-making by farmers, particularly around antibiotic use as an integral part of the production cycle risk management. Our findings suggest that strategies to improve antibiotic stewardship and responsible use should exploit the patron-client relationship which provides the social and information network for small-scale farmers. Masud et al. Antibiotic Use in Poultry Production Conclusion: Social capital theory can be applied to the patron-client relationship observed among poultry farmers and dealers in Bangladesh to identify influences on decision making and antibiotic use. Within unregulated food production systems, strategies to promote the prudent use of antibiotics should target commercial feed producers and livestock pharmaceutical manufacturers as a first step in developing a sustainable poultry value chain.
Antimicrobial resistance is a growing public health challenge that is expected to disproportionately burden lower-and middle-income countries (LMICs) in the coming decades. Although the contributions of human and veterinary antibiotic misuse to this crisis are well-recognized, environmental transmission (via water, soil, or food contaminated with human and animal feces) has been given less attention as a global driver of antimicrobial resistance (AMR), especially in urban informal settlements in LMICs, commonly known as "shantytowns" or "slums." These settlements may be unique hotspots for environmental AMR transmission given: 1) the high density of humans, livestock, and vermin living in close proximity; 2) frequent antibiotic misuse; and 3) insufficient drinking water, drainage, and sanitation infrastructure. Here, we highlight the need for strategies to disrupt environmental AMR transmission in urban informal settlements. We propose that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections, and preventing antibiotic misuse. We also suggest that additional research is directed towards developing economic and legal incentives for evaluating and implementing water and waste infrastructure in these settings. Given that almost 90% of urban population growth will occur in regions predicted to be most burdened by the AMR crisis, there is an urgent need to build effective, evidence-based policies that could influence massive investments in the built urban environment in LMICs over the next few decades. Urban informal settlements are densely populated residential areas characterized by insufficient access to improved water and sanitation services, households constructed of non-durable material, insufficient living area, insecure residential status, and high participation in the informal economy 1-3. Four of the five largest slums in the world are in Asian and African LMICs, and in some countries, over 50% of the urban population resides in these types of settlements (e.g., Bangladesh, Kenya, Ethiopia) 1. Population densities are difficult to measure in urban informal settlements but they are estimated to exceed 125,000 persons/square km in multiple major LMIC cities, including Hyderabad
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.