Representation of a signal in a sparse way is a useful and popular methodology in signal-processing applications. Among several widely used sparse transforms, dictionary learning (DL) algorithms achieve most attention due to their ability in making data-driven nonanalytical (nonfixed) atoms. Various DL methods are well-established in seismic data processing due to the inherent low-rank property of this kind of data. We have introduced a novel data-driven 3D DL algorithm that is extended from the 2D nonnegative DL scheme via the multitasking strategy for random noise attenuation of seismic data. In addition to providing parts-based learning, we exploit nonnegativity constraint to induce sparsity on the data transformation and reduce the space of the solution and, consequently, the computational cost. In 3D data, we consider each slice as a task. Whereas 3D seismic data exhibit high correlation between slices, a multitask learning approach is used to enhance the performance of the method by sharing a common sparse coefficient matrix for the whole related tasks of the data. Basically, in the learning process, each task can help other tasks to learn better and thus a sparser representation is obtained. Furthermore, different from other DL methods that use a limited random number of patches to learn a dictionary, the proposed algorithm can take the whole data information into account with a reasonable time cost and thus can obtain an efficient and effective denoising performance. We have applied the method on synthetic and real 3D data, which demonstrated superior performance in random noise attenuation when compared with state-of-the-art denoising methods such as MSSA, BM4D, and FXY predictive filtering, especially in amplitude and continuity preservation in low signal-to-noise ratio cases and fault zones.
Attenuation of random noise is a major concern in seismic data processing. This kind of noise is usually characterized by random oscillation in seismic data over the entire time and frequency. We introduced and evaluated a low-rank and sparse decomposition-based method for seismic random noise attenuation. The proposed method, which is a trace by trace algorithm, starts by transforming the seismic signal into a new sparse subspace using the synchrosqueezing transform. Then, the sparse time-frequency representation (TFR) matrix is decomposed into two parts: (a) a low-rank component and (b) a sparse component using bilateral random projection. Although seismic data are not exactly low-rank in the sparse TFR domain, they can be assumed as being of semi-low-rank or approximately low-rank type. Hence, we can recover the denoised seismic signal by minimizing the mixed [Formula: see text] norms’ objective function by considering the intrinsically semilow-rank property of the seismic data and sparsity feature of random noise in the sparse TFR domain. The proposed method was tested on synthetic and real data. In the synthetic case, the data were contaminated by random noise. Denoising was carried out by means of the [Formula: see text] classical singular spectrum analysis (SSA) and [Formula: see text] deconvolution method for comparison. The [Formula: see text] deconvolution and the classical [Formula: see text] SSA method failed to properly reduce the noise and to recover the desired signal. We have also tested the proposed method on a prestack real data set from an oil field in the southwest of Iran. Through synthetic and real tests, the proposed method is determined to be an effective, amplitude preserving, and robust tool that gives superior results over classical [Formula: see text] SSA as conventional algorithm for denoising seismic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.