Preparation of ternary B2O3·Zn6Al2O9·ZnO nanomaterials by a simple co-precipitation method and their potential application as an efficient photo-catalyst as well as chemical sensor has been reported.
In this study, by using a co-precipitation method MoO 3 /CuO/ZnO nanocomposite material was synthesized. Then the prepared material was fully characterized by using XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive x-ray spectroscopy), CV (cyclic voltammetry), and EIS (Electrochemical Impedance Spectroscopy). Zeta potential and hydrodynamic size were measured using a Zetasizer in PBS buffer. By using Scherrer's formula from XRD, particle size was determined which was around 26.5 nm. For the promising chemical sensor development, MoO 3 /CuO/ZnO nanocomposite material was fabricated onto a glassy carbon electrode (GCE) to provide a sensor probe with a fast response towards the selective hydrazine (HZ) toxin in phosphate buffer phase. The fabricated sensor probe is exhibited good sensitivity and long-term stability as well as enhanced electrochemical performances. A calibration plot was found linear in the range of 0.2 nM to 2.0 mM (linear dynamic range, LDR) in presence of aqueous HZ solutions with highest sensitivity value and lower limit of detection and good limit of quantification (LOQ). This approach is promising as an efficient technique in developing a highly effective sensor probe with ternary metal oxides for detecting environmental pollutants on a broad scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.