This paper examines the criteria and attributes for assessing defects in a heritage building. The goal of this paper is to solve element type for building defects by using the Analytic Hierarchy Process (AHP). A survey questionnaire was develop based on the identified criteria and attributes of defect for a heritage building in Malaysia. The survey questionnaire was administered to consultants, academics, and contractors. A total of 20 expert panels was selected to determine the element of the defect in building performance. The sensitivity analysis of alternative ratings in respect to difference pairwise comparisons of the criteria and attribute was carried out. By changing one element in the pairwise comparison matrix, the process of defect element is monitored thus enabling possible improvements. An overall ranking of the Hierarchy priorities of criteria and attribute was a result of the AHP analysis. The result of the research is weightage for each criterion and its respective attributes. The criteria and attributes will be used as elements to develop a strategic heritage building performance procedure in Malaysia.
Malaysia is progressing into Industry Revolution (IR) 4.0 which emphasizes more onto digital, data and artificial intelligence where everything is expected to be automated. However, cost tends to be a major issue at the pioneer stage of embracing technology where Building Information Modelling (BIM) for example tends to be a cost tussle for the current construction industry. Yet, research has shown that BIM is arguably one of the technology platforms in combating the costing issue considering that BIM enables 3D model elements to link to cost and auto-generate quantities which potentially achieve cost-effective project. Due to the conflicting perspectives of how BIM affects project cost issues, it is imperative to investigate the cost-related issues in implementing BIM in the project and to determine how BIM in general positively influences the overall project cost. Qualitative research is adopted in this study. A semi-structured interview was conducted among four professionals who employs BIM in their project. They consist of the assistant manager, senior manager and chief executive officer. The data collected is analysed by utilising Matrix Table for better organisation. The scope of the study is in the Selangor state in which the local construction industry had applied BIM in their construction industry up to the 3D stage. The results showed that the BIM implementation cost is not too burdensome as it is only a one-time cost and does not vary throughout the project period. In addition, the BIM influence on the overall cost of the project is beneficial to the industry. It improves workflow and cost management. In conclusion, BIM is beneficial to the construction industry in the long term. It is important to resolve the cost-related issues for implement BIM and hence, encourage the usage of BIM, especially in the IR 4.0 ecosystem.
This study examines the criteria and properties of the elements in the legacy of buildings. Using the Hierarchy Analysis Method (AHP), new instruments are developed based on the criteria and attributes that have been identified for the legacy building elements. The new instrument is given to industry professionals and academicians to get their opinions. This study shows the number of attributes of the score for the criteria. The results show that new instruments are developed and used as tools for assessing the elements of heritage building conditions. This new instrument can be proposed to the National Heritage Department to be used as a guideline for assessing the heritage buildings in the future.
Climate change is considered to be one of the biggest threats faced by nature and humanity today. The goal of this study is to predict future climate change for rainfall in the Upper Kurau Basin. In this research, the applicability of statistical downscaling model (SDSM) in downscaling rainfall in the Upper Kurau River basin, Perak, Malaysia was investigated. The investigation includes calibration of the SDSM model by using large-scale atmospheric variables encompassing the National Centers for Environmental Prediction (NCEP) reanalysis data. Rainfall data were derived for three 30-year time slices, 2020s, 2050s and 2080s, with A2 and B2 scenarios. A2 is considered among the "worst" case scenarios, projecting high emissions for the future. Unlikely, B2 projected a lower emission for the future and it is considered as "environmental" case scenarios. Results from simulation showed that during the calibration and validation stage, the SDSM model was well acceptable in regards to its performance in downscaling of daily and annual rainfalls. Under both scenarios A2 and B2, during the prediction period of 2010-2099, changes of annual mean rainfall in the Upper Kurau River basin would present a trend of increased rainfall in 2020s; insignificant changes in the 2050s; and a surplus of rainfall in the 2080s, as compared to the mean values of the base period. Annual mean rainfall would increase by about 33.7% under scenario A2 and increase by 27.9% under scenario B2 in the 2080s. Most of the areas of the Upper Kurau River Basin were dominated by increasing trend of rainfall and will become wetter in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.