The aim of the present study was to evaluate the protective effect of Syzygium cymosum leaf methanol extract (SCL) against carbofuran (CF)induced hepatotoxicity in Sprague−Dawley rats, along with the identification and quantification of polyphenolic composition by high-performance liquid chromatography (HPLC). Results revealed the presence of alkaloids, tannins, and flavonoids in SCL. Similarly, HPLC analysis suggests that SCL contains some known important antioxidants, such as rutin, benzoic acid, and salicylic acid that could be responsible for the hepatoprotective activity of the extract. In CFexposed rats, significant hematological alterations along with histological changes were marked by the presence of necrosis, congestion, and inflammation. CFintoxication also showed an increase in lipid peroxidation and decrease in cellular antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) levels in rats compared with the control group. Furthermore, coadministration of SCL significantly ameliorated the abnormalities and improved the cellular arrangement in experimental animals. SCL also reversed the alteration of hematological and biochemical parameters and brought them back to normal levels as compared to the control group. In conclusion, S. cymosum may be one of the best sources of natural antioxidant compounds that can be used in the treatment of oxidative stress and stress-related diseases and disorders.
In folk medicines, Justicia gendarussa (J. gendarussa) is used as a depurative herb for treating fever, pain, and cancer and as laxative for constipation. The aim of the present investigation was to evaluate the hepatoprotective effect of the leaf methanol extract of J. gendarussa leaf (J gMe) against carbofuran (CF)-intoxicated liver injuries in Sprague−Dawley rats, along with the antioxidant activity of this extract. For this purpose, levels of serum diagnostic markers, hepatic antioxidant enzymes, and liver histoarchitecture were employed to justify the protective efficacy of J gMe. In addition, the phenolic and flavonoid contents of the extract were quantified, and antioxidant activity was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide, hydrogen peroxide, and hydroxyl free radical scavenging assays. Results revealed that the leaf extract caused a significant (<0.05, <0.01) decrease of the level of hepatic enzymes, triglycerides, and bilirubin and an increase of the total protein. J gMe has also significantly (<0.05, <0.01) lowered the level of malonylaldehyde. Carbofuran markedly suppressed hepatic antioxidant enzymes, however, the leaf extract significantly augmented these enzymes. The hepatoprotective effect was demonstrated by the improvement in the histo-architectural features of liver sections of CFintoxicated rats treated with J gMe at 500 mg/kg dose. In addition, J gMe showed moderate total phenolic and total flavonoid content, whereas the IC 50 values of DPPH, nitric oxide, hydrogen peroxide, and hydroxyl free radical scavenging assays were 71.31 ± 0.42, 134.82 ± 0.14, 47.69 ± 0.38, and 118.44 ± 0.30 μg/mL, respectively. In conclusion, the present study suggests the protective role of J gMe against hepatic injury induced by CF, which may be attributed to its higher antioxidant properties and thereby scientifically justifies its traditional use.
Background and Purpose: In the activated state of small-conductance Ca 2+ -activated potassium (K Ca 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates K Ca 2.2a and K Ca 2.3 channel activity but not the K Ca 2.1 and K Ca 3.1 subtypes.Experimental Approach: Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtypeselective modulation of K Ca 2 channels by CyPPA.
A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono-and dihalophenyl rings and were subsequently studied for their potentiation of K Ca 2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzenesubstituted 4-pyrimidineamine in compound 2q conferred a ∼10fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating K Ca 2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the K Ca 2.2a/K Ca 2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.