This paper sets out to create an implementation for fingerprint-based positioning using massive multiple-input multiple-output (MIMO) technology, by means of deep convolutional neural networks (CNN), and utilizing the wireless channel state information (CSI). Due to the sheer volume of computational requirements imposed by CNN processing, an acceleratorassisted design is well-suited to the task at hand. Consequently, an application specific instruction set processor (ASIP) is designed to combine flexibility with implementation efficiency. This ASIP is equipped with vector processing capabilities employing a single instruction multiple data (SIMD) scheme, and additionally has a very large instruction word (VLIW) architecture to further exploit instruction-level parallelism. A configurable 2D array of processing engines (PE) is integrated into the processor, in a tightly coupled manner, to accelerate the CNN operation. Synthesis results will be demonstrated using the GF-22 nm FD-SOI technology with a clock frequency of 555 MHz. The system can achieve a throughput of 271 positionings/s, with an average positioning error of 3.5 λ (40 cm) at a carrier frequency of 2.6 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.