Changes in lipid metabolism have been shown to occur during pregnancy. The thyroid hormones affect lipid metabolism. The present study was carried out to find out whether the last trimester of pregnancy affects thyroid hormones, thyroid-stimulating hormone (TSH), lipid, and lipoprotein profile in healthy dromedary camels. Twenty clinical healthy dromedary camels aged between 4-5 years were divided into two equal groups: (1) pregnant camels in their last trimester of pregnancy and (2) non-pregnant age-matched controls. Thyroid function tests were carried out by measuring serum levels of TSH, free thyroxin (fT4), total thyroxin (T4), free triiodothyronine (fT3), and total triiodothyronine (T3) by commercially available radio immunoassay kits. Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) cholesterol were analyzed using enzymatic/spectrophotometric methods while low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL), and total lipid (TL) were calculated using Friedewald's and Raylander's formula, respectively. Serum levels of TSH and thyroid hormones except fT4 did not show any significant difference between pregnant and non-pregnant camels. fT4 level was lower in the pregnant camels (P < 0.05). Serum levels of total cholesterol, triglyceride, total lipid, LDL cholesterol, HDL cholesterol, and VLDL did not show significant difference between pregnant and non-pregnant camels. All of these variables in pregnant camels were higher than non-pregnant. Based on the results of this study, the fetus load may not alter the thyroid status of the camel and the concentrations of thyroid hormones were not correlated with TSH and lipid profile levels in the healthy pregnant camels.
In recent years more attention has been given to herbal drugs in the treatment and prevention of drug toxicity because of the harmful effects of chemical drugs. In this study, directed for this purpose, research was conducted on the protective effect of hydro-ethanolic extract of saffron petals (SPE) against acetaminophen (APAP) induced acute nephrotoxicity. Twenty-four male Wistar rats were distributed into four groups of six each. Group I, as a control group, received normal saline (0.09%) orally (PO). Group II, as an intoxicated group was treated with APAP, PO (600 mg/kg). In the groups III and IV, SPE in a dose of 10 and 20 mg/kg along with APAP (600 mg/kg) was administered, respectively. At the end of the trial (8th day), blood was taken from the heart of rats for assessment of biochemical parameters and the right kidney was placed in 10% buffered formalin for histopathological evaluations. In the APAP treatment group, higher serum creatinine and uric acid were observed. SPE in a dose of 20 mg/kg significantly reduced serum creatinine and uric acid. In pathologic evaluation, a dose of 20 mg/kg of SPE prevented the kidney injuries induced by APAP. Tissues changes were in accordance with biochemical findings. It is likely that the SPE contributed to the prevention of acute nephrotoxicity induced by APAP.
Milk protein gene expression varies during the pregnancy/lactation cycle under the influence of lactogenic hormones which induce the activation of several transcription factors. Beyond this activation modifying the binding properties of these factors to their consensus sequences, their interactions with DNA is regulated by variations of the chromatin structure. In the nuclei of the mammary epithelial cell, the three dimensional organisation of the chromatin loops, located between matrix attachment regions, is now being studied. The main milk components are organised in supramolecular structures. Milk fat globules are made of a triglyceride core enwrapped by a tripartite membrane originating from various intracellular compartments. The caseins, the main milk proteins, form aggregates: the casein micelles. Their gradual aggregation in the secretory pathway is initiated as soon as from the endoplasmic reticulum. The mesostructures of the milk fat globule and of the casein micelle remain to be elucidated. Our goal is to make some progress into the understanding of the molecular and cellular mechanisms involved in the formation of these milk products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.