This manuscript reports the temperature dependence of ferroelectric switching in Al 0.84 Sc 0.16 N, Al 0.93 B 0.07 N, and AlN thin films. Polarization reversal is demonstrated in all compositions and is strongly temperature dependent. Between room temperature and 300 C, the coercive field drops by almost 50% in all samples, while there was very small temperature dependence of the remanent polarization value. Over this same temperature range, the relative permittivity increased between 5% and 10%. Polarization reversal was confirmed by piezoelectric coefficient analysis and chemical etching. Applying intrinsic/homogeneous switching models produces nonphysical fits, while models based on thermal activation suggest that switching is regulated by a distribution of pinning sites or nucleation barriers with an average activation energy near 28 meV.
High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization. Three recently synthesized carbides are used as a testbed: (HfNbTaTiV)C, (HfNbTaTiW)C, and (HfNbTaTiZr)C. It is found that vibrational contributions should not be neglected when precursors or decomposition products have different nearest-neighbor environments from the high-entropy carbide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.