This work represents the results of experiments on silicon dioxide insulation materials mixed with low-density polyethylene (LDPE) at a different proportion to prevent the transmittance of IR domain and to allow the transmittance of ultraviolet-visible (UV-Vis) domains, so we can keep the thermal radiation of the ground in the greenhouse. The mechanical properties of nanocomposites such as tensile were evaluated and discussed. Several ratios of nanosilica particles were employed to fabricate low-density polyethylene (LDPE) composites using melt mixing and hot molding methods. Six of composite films from different ratios (0.5, 1, 2.5, 5, 7.5, and 10 wt% nanosilica) were prepared. The obtained composite films were characterized and identified by ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared spectroscopy (FTIR). Thermal stability of samples was evaluated by thermogravimetric analysis (TGA). Surface morphology of samples was investigated by scanning electron microscopy (SEM). At specific mixing ratio, the ultraviolet-visible transmittance is allowed, while far infrared radiation transmittance was prohibited, and that will be explained in details. Optical measurements show that the composite films prevent the transmission of IR radiation near 9 μm and allow UV-Vis transmission during sun-shining time. The mechanical behavior was studied using tensile tests for nanosilica-reinforced LDPE composite. The sample with an addition of 1 wt% nanosilica has successfully enhanced the mechanical properties of LDPE material.
Six ratios of nanosilica particles were employed to fabricate low-density polyethylene (LDPE) composites using melt mixing and hot molding methods. Several composite films with different ratios (0.5, 1, 2.5, 5, 7.5, and 10 wt%) of SiO2 were prepared. The obtained composite films were identified and characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). At a specific mixing ratio, far infrared radiation transmittance was prohibited while the ultraviolet-visible transmittance is allowed; this will be explained in detail. Optical measurements show that the composite films prevent the transmission of IR radiation near 9 μm and allow UV-VIS transmission during sun-shining time. The mechanical behaviour of a nanosilica-reinforced LDPE composite was studied using tensile tests. The addition of 1 wt% nanosilica has successfully enhanced the mechanical properties of the LDPE material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.