Proper planning of preventive maintenance (PM) is crucial in many industries such as oil transmission pipelines, automotive and food industries. A critical decision in the PM plans is to determine frequencies and types of maintenance actions in order to achieve a certain level of system availability with a minimum total cost. In this paper, we consider the problem of obtaining availability-based non-periodic optimal PM planning for systems with deteriorating components. The objective is to sustain a certain level of availability with the minimal total maintenance-related costs. In the proposed approach, the planning horizon is divided into some inspection periods of equal intervals. For any given interval, a decision must be made to perform one of the three actions on each component; inspection, preventive repair and preventive replacement. Any of these activities has different effects on the reliability of the components and the corresponding distinct costs based on the required recourses. The cost function includes the cost for repair, replacement, system downtime and random failures. System availability and PM resources are the main constraints considered. Since the proposed model is combinatorial in nature involving non-linear decision variables, a simulated annealing algorithm is employed to provide good solutions within a reasonable time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.