His bundle (HB) pacing is an established modality for achieving physiological pacing with a low risk of long‐term lead‐related complications. The development of specially designed lead and delivery tools has improved the feasibility and safety of HB pacing (HBP). Knowledge of the anatomy of HB region and the variations is essential for successful implantation. Newer delivery systems have further improved procedural outcomes. Challenging implant cases can be successfully performed by reshaping the current sheaths, using “sheath in sheath” technique or “two‐lead implantation technique.” Special attention to the lead parameters at implant, programming, and follow‐up is necessary for successful long‐term outcomes with HBP. Widespread use of HBP by electrophysiologists and further advances in dedicated delivery systems and leads are essential to further improve the effectiveness of the implantation.
Radiofrequency catheter ablation has become the standard of care for the management of various arrhythmias and, in fact, the first-line therapy for many tachyarrhythmias. It entails creating scar tissue in the heart in regions where abnormal impulses form or propagate to restore normal cardiac conduction. As the heart is a complex organ and is surrounded by and related to many other anatomical structures, it is important to avoid the collateral damage that can happen from radiofrequency (RF) ablation on the endocardium as well as on the epicardium. This review explores methods for mitigating or limiting collateral damage during catheter ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.