In this paper, a neurodynamic model is given to solve nonlinear pseudo-monotone projection equation. Under pseudo-monotonicity condition and Lipschitz continuous condition, the projection neurodynamic model is proved to be stable in the sense of Lyapunov, globally convergent, globally asymptotically stable, and globally exponentially stable. Also, we show that, our new neurodynamic model is effective to solve the nonconvex optimization problems. Moreover, since monotonicity is a special case of pseudo-monotonicity and also since a co-coercive mapping is Lipschitz continuous and monotone, and a strongly pseudo-monotone mapping is pseudo-monotone, the neurodynamic model can be applied to solve a broader classes of constrained optimization problems related to variational inequalities, pseudo-convex optimization problem, linear and nonlinear complementarity problems, and linear and convex quadratic programming problems. Finally, several illustrative examples are stated to demonstrate the effectiveness and efficiency of our new neurodynamic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.