Angiotensin converting enzyme-I (ACE-I) is a key therapeutic target of the renin−angiotensin−aldosterone system (RAAS), the central pathway of blood pressure regulation. Food-derived peptides with ACE-I inhibitory activities are receiving significant research attention. However, identification of ACE-I inhibitory peptides from different food proteins is a labor-intensive, lengthy, and expensive process. For successful identification of potential ACE-I inhibitory peptides from food sources, a machine learning and structural bioinformatics-based web server has been developed and reported in this study. The web server can take input in the FASTA format or through UniProt ID to perform the in silico gastrointestinal digestion and then screen the resulting peptides for ACE-I inhibitory activity. This unique platform provides elaborated structural and functional features of the active peptides and their interaction with ACE-I. Thus, it can potentially enhance the efficacy and reduce the time and cost in identifying and characterizing novel ACE-I inhibitory peptides from food proteins. URL: http://hazralab.iitr.ac.in/ahpp/index.php.
The conventional histogram equalisation (CHE), though being simple and widely used technique for contrast enhancement, but fails to preserve the mean brightness and natural appearance of images. Most of the improved histogram equalisation (HE) methods give better performance in terms of one or two metrics and sacrifice their performance in terms of other metrics. In this paper, a novel fuzzy based bi-HE method is proposed which equalises low contrast images optimally in terms of all considered metrics. The novelty of the proposed method lies in selection of fuzzy threshold value using level-snip technique which is then used to partition the histogram into segments. The segmented sub-histograms, like other bi-HE methods, are equalised independently and are combined together. Simulation results show that for widerange of test images, the proposed method improves the contrast while preserving other characteristics and provides good trade-off among all the considered performance metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.