Mild hypothermia (HT(32°C-33°C)) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT(32-33°C) has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C ± 1.1°C for the in vitro experiments and 0.5°C ± 1.6°C for the in vivo measurements.
BackgroundTarget temperature management is the single most effective intervention and the gold standard in post-resuscitation care today. However, cooling the whole body below 33–34 °C can cause severe complications. Therefore, developing a selective brain cooling (SBC) approach which can be initiated early to induce rapid cooling and maintain the target temperature over 12–24 h before slowly rewarming brain temperature by itself alone would be advantageous. Vortex tubes are simple mechanical devices generating cold air from a stream of compressed air without applied chemical or energy. This study investigated whether blowing cooled air from a vortex tube into the nasal cavities is safe and effective to selectively reduce and maintain before slowly rewarming brain temperature back to normal temperature.MethodsExperiments were conducted on ten juvenile pigs. Body temperature was measured using an esophageal and a rectal temperature probe while brain temperature with an intraparenchymal thermocouple probe. Cerebral blood flow (CBF) was measured with CT perfusion.ResultsBrain temperature dropped below 34 °C within 30–40 min while a brain-esophageal temperature difference greater than 3 °C was maintained over 6 h. There was no evidence of nasal or nasopharynx mucosal swelling, necrosis, or hemorrhage on MRI examination. CBF first decreased and then stabilized together with brain temperature before increasing to the baseline level during rewarming.ConclusionsSBC was accomplished by blowing cold air from a vortex tube into the nasal cavities. Due to its portability, the method can be used continuously in resuscitated patients in both in- and out-of-hospital situations without interruption.
Introduction: Selective brain cooling can minimize systemic complications associated with whole body cooling but maximize neuroprotection. Recently, we developed a non-invasive, portable and inexpensive system for selectively cooling the brain rapidly and demonstrated its safety and efficacy in porcine models. However, the widespread application of this technique in the clinical setting requires a reliable, non-invasive and accurate method for measuring local brain temperature so that cooling and rewarming rates can be controlled during targeted temperature management. In this study, we evaluate the ability of a zero-heat-flux SpotOn sensor, mounted on three different locations, to measure brain temperature during selective brain cooling in a pig model. Computed Tomography (CT) was used to determine the position of the SpotOn patches relative to the brain at different placement locations.Methods and Results: Experiments were conducted on two juvenile pigs. Body temperature was measured using a rectal temperature probe while brain temperature with an intraparenchymal thermocouple probe. A SpotOn patch was taped to the pig’s head at three different locations: 1-2 cm posterior (Location #1, n=1), central forehead (Location #2, n=1); and 1-2 cm anterior and lateral to the bregma i.e., above the eye on the forehead (Location #3, n=1). This cooling system was able to rapidly cool the brain temperature to 33.7 ± 0.2°C within 15 minutes, and maintain the brain temperature within 33-34°C for 4-6 hours before slowly rewarming to 34.8 ± 1.1°C from 33.7 ± 0.2°C, while maintaining the core body temperature (as per rectal temperature probe) above 36°C. We measured a mean bias of -1.1°C, -0.2°C and 0.7°C during rapid cooling in induction phase, maintenance and rewarming phase, respectively. Amongst the three locations, location #2 had the highest correlation (R2 = 0.8) between the SpotOn sensor and the thermocouple probe.Conclusions: This SBC method is able to tightly control the rewarming rate within 0.52 ± 0.20°C/h. The SpotOn sensor placed on the center of the forehead provides a good measurement of brain temperature in comparison to the invasive needle probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.